Innovationsstudien und Indikatoren
Informationsmangel in der Informationsfülle

Sonja Kind, Jan Wessels (Hg.)
Impressum

Institut für Innovation und Technik
in der VDI/VDE-IT

Steinplatz 1
10623 Berlin
www.iit-berlin.de
Dr. Sonja Kind
Dr. Jan Wessels
kind@iit-berlin.de
wessels@iit-berlin.de

Januar 2009

Inhaltverzeichnis

Einführung ...5

Die Rechercheplattform R-ITA – ein neuer Zugang zu Innovationsstudien und Branchenberichten7

1 Warum R-ITA? ..7
 1.1 Bedarfe für neue Innovationsfelder ..7
 1.2 Status Quo der Datenrecherche ..7
 1.3 Auftrag des Projekts ..8

2 Der Weg zur Rechercheplattform ...9
 2.1 Operationalisierung ..9
 2.2 Erfahrungen in der Umsetzung ..11

3 Ein Zwischenfazit ...15
 3.1 Erste Ergebnisse ..15
 3.2 Ausblick und Zukunftspotenziale des Rechercheportals ...18

Datenanalyse wirtschaftlich aktiver Innovationsfelder ..20

1 Einführung ..20

2 Bestandsaufnahme und Entwicklung der Methodik ..20
 2.1 Relevante Innovationsindikatoren ..22
 2.2 Wissensvernetzung als Voraussetzung von Innovationsprozessen ..22

3 Exemplarische Auswertung ausgewählter Technologiefelder ..24
 3.1 IuK-Dienstleistungen ..24
 3.2 Rote Biotechnologie ..24
 3.3 Nanotechnologie ..26

4 Schlussfolgerungen und Handlungsempfehlungen ...26
 4.1 Anpassung von Statistiken ..27
 4.2 Innovationserhebung ..28
Potenzialanalyse wissenschaftlich-technischer Innovationsfelder ...33

1 Einführung ...33

2 Bestandsaufnahme und Entwicklung der Methodik ..34

2.1 Grundlagen ..34

2.2 Eckpunkte des Indikatorensystems ..34

2.3 Indikatoren des Indikatorensystems ..35

3 Anwendung der Methodik für ausgewählte Bildgebende Verfahren in der Medizintechnik46

3.1 Grundlagen ..46

3.2 Wirtschaftliche Bedeutung von Bildgebenden Verfahren ..47

3.3 Anwendung der Methodik ..47

3.4 Bewertung des Ansatzes ..47

3.5 Zwischenfazit ...47

4 Zusammenfassung, Handlungsempfehlungen und Zukunftsoptionen ..53

4.1 Zusammenfassung der wesentlichen Ergebnisse ..53

4.2 Möglichkeiten und Grenzen des Ansatzes ..53

4.3 Forschungsbedarfe und Perspektiven ..54

4.4 Fazit ..54

5 Referenzen ...56

5.1 Literatur ..56

5.2 Internetressourcen ..56

Profile zu den Herausgebern ..61
Einführung

Es besteht ein Bedarf für einen schnellen und einfachen Zugang zu Studien

Umsetzbarkeit und Nutzen des Rechercheports Innovations- und Technikanalyse R-ITA wurde nachgewiesen

Die Bilanz zum Pilotprojekt Rechercheportal Innovations- und Technikanalyse ist positiv

Zukunft des Rechercheports Innovations- und Technikanalyse

Das als Pilotprojekt gestartete Rechercheportal könnte nun in einer nächsten Phase weiter fortgeführt werden und damit online gehen. Der dafür notwendige Ressourcenaufwand wird dabei von verschiedenen Voraussetzungen geprägt. Der Aufwand hängt zum Beispiel davon ab, wie das jetzige Portal in der Zukunft inhaltlich ausgerichtet werden soll. Eine Ausweitung

Projekte zur Generierung neuer innovationsstatistischer Daten

Die in Deutschland etablierten Prozesse bieten eine gute Grundlage zur Erhebung innovationsstatistischer Daten.

Beide Projekte kommen auch in der Beschreibung ihrer Lösungsansätze zu ähnlichen Schlussfolgerungen: Die bereits in Deutschland etablierten Erhebungsprozesse bieten eine gute Grundlage auch für die Erfassung neuer Innovationsfelder, wenn die Erhebungsverfahren entsprechend kontinuierlich erweitert werden. Dabei müssen einerseits neue Innovations- und Technologiefelder frühzeitig in die bestehenden Klassifikationen eingearbeitet werden und andererseits auch neue Wege der Datenerhebung beschritten werden.

Ein besonderes Problem der Frühindikatorik wurde deutlich bei der Frage, zu welchem Zeitpunkt eigentlich am frühesten mit der Datenerhebung begonnen werden kann. Voraussetzung für eine Erfassbarkeit ist dabei auf jeden Fall, dass ein im Entstehen befindliches Innovationsfeld bereits Teil des wissenschaft-technischen Diskurses ist. Das Innovationsfeld muss bereits eigene Begrifflichkeiten ausgebildet haben, damit nach ihm gefragt werden kann.

Zweitens zeigen die beiden Projekte aber auch Lösungsansätze auf, die komplementär zu R-ITA sind. Die beiden Forschungsarbeiten machen deutlich, dass mit der bereits bestehenden Innovationserhebungskultur in Deutschland eine solide Basis vorhanden ist, auf die aufgebaut werden kann. Mit relativ geringem Ressourcenaufwand wäre es möglich, auf breiter Basis Indikatoren zu erheben, die auch für sehr junge Technologie- und Innovationsfelder zu einer begründeten Früherkennung und Potenzialabschätzung führen könnten.
1 Warum R-ITA?

1.1 Bedarfe für neue Innovationsfelder

Statistische Daten und Fakten bilden eine unverzichtbare Grundlage für politische Entscheidungen, welche von innovationspolitischen Strategien in Bildung und Forschung verfolgt werden sollen. Die Schaffung dieser Grundlage werden vom Bundesministerium für Bildung und Forschung (BMBF) laufend Innovationsprozesse analysiert, um auf Basis der generierten Analysen und Statistiken neue Erkenntnisse für die stetige Verbesserung der Innovationspolitik abzuleiten.

So werden im Rahmen der Innovations- und Technikanalyse (ITA) systematisch Analysen durchgeführt, um beispielsweise Entwicklungs- und Anwendungspotenziale von Technologien frühzeitig zu erkennen sowie gesellschaftliche Innovationsbedarfe zu identifizieren. ITA verfolgt damit die Zielsetzung auf der Grundlage von Fakten, Argumente für die Unterstützung von strategischen Entscheidungen zu bieten.

Somit wird allein durch die Studien des BMBF und der im Rahmen von ITA durchgeführten Analysen eine äußerst umfangreiche Datenbasis für Entscheidungsträger im innovationspolitischen Kontext zur Verfügung gestellt. Aber nicht nur die im Rahmen des BMBF und ITA erfassten Daten bilden die Grundlage für innovationspolitische Fragestellungen, sondern darüber hinaus auch eine enorme Vielzahl durch andere nationale oder internationale, private oder öffentliche Einrichtungen erstellter Studien und deren erfasster Daten, Analysen und Fakten.

Die Entscheidungsträger im innovationspolitischen Kontext sehen sich also mit einer immensen Datenmenge konfrontiert; produziert von einer fast unübersichtlichen Vielzahl von Akteuren in Deutschland, Europa und international. Bei der praktischen Arbeit im Alltag stellt sich daher die große Herausforderung, wie diese Informationsfülle angemessen bewältigt werden kann. Typische Fragen, die sich bei der Arbeit ergeben, sind: Wie können sämtliche Daten im Überblick gehalten werden? Wie lässt sich vermeiden, dass Daten ggf. redundant erfasst werden? Wie können Recherchen verkürzt werden? Wie lässt sich sicherstellen, dass wichtige Daten nicht übersehen werden? Wo findet sich was? Wer erhebt welche Daten? Wie lassen sich effizient Daten für eigene Analysen sammeln? Wie lässt sich in angemessener Zeit feststellen, ob zu bestimmten Gebieten eventuell keine Daten existieren?

Für den Nutzer bzw. Akteur bedeutete dies, dass Daten zu wichtigen Zukunftsfeldern, wie Nanotechnologie, Sicherheit, Mobilität, Mikrosystemtechnologie, Optische Technologien oder Informations- und Kommunikationstechnologien etc., nicht auf einen Blick erfasst und ausgewertet werden können. Wenngleich es im Ansatz bereits Einzellösungen gibt, wie die vom BMBF initiierte Webseite www.biotechnologie.de, auf der eine systematische Zusammenstellung vorhandener Daten und Fakten versucht wird, so finden sich auch hier keine zu diesem Innovationsfeld relevanten Studien. Und die meisten anderen Innovationsfelder sind noch weniger systematisch erfasst.

1.2 Status Quo der Datenrecherche

Beispielhaft sollen an dieser Stelle Institutionen und Studien genannt werden, um einen Eindruck davon zu vermitteln, wie umfangreich sich das zur Verfügung stehende Datenmaterial darstellt, und welche Vielzahl an unterschiedlichen Institutionen an dessen Erstellung beteiligt ist. Grundsätzlich ist dabei zu unterscheiden zwischen Daten und Fakten, die im öffentlichen Auftrag erstellt werden, und solchen, die von der Privatwirtschaft erhoben werden:
Öffentliche Einrichtungen bzw. öffentlich beauftragte Studien:
- Bundesministerien wie das BM BF: „Bericht zur technologischen Leistungsfähigkeit“, „Forschung und Innovation in Deutschland“, „Innovations- und Technikanalysen“, „Nanotechnologie als wirtschaftlicher Wachstumsmarkt“ etc.
- Statistisches Amt der Europäischen Gemeinschaften (Eurostat) und das deutsche statistische Bundesamt (Destatis): Branchendaten
- EU-Kommission und der European Science and Technology Observatory: „Benchmarking nationaler Forschungspolitik“ (hier werden solche Aspekte wie Personalressourcen in FuE, öffentliche und private Investitionen in FuE, Produktivität von Wissenschaft und Technologie oder die Auswirkungen von FuE auf wirtschaftliche Wettbewerbsfähigkeit und Beschäftigung untersucht), „Europäischer Innovationsanzeiger“ (Messung von Fortschritt bei Innovationsleistungen in den Bereichen Humanressourcen, Wissensbildung, Transfer und Anwendung von Wissen sowie Innovationsfinanzen, -output und -märkte anhand von 18 Schlüsselindikatoren)
- Öffentliche getragene Institutionen wie DIW, FiBS, WZB, ZEW, Fraunhofer-Institute, TAB etc.
- Internationale Institutionen: Advanced Technology Assessment System – United Nations Conference on Trade and Development (Vereinte Nationen), Office of Science and Technology (US), RAND Corporation (US), National Institute of Science and Technology Policy (Japan), TA-Swiss (Schweiz)

Private Einrichtungen:
- Branchenverbände wie BIO Deutschland, BITKOM, DECHEMA, DIB etc.
- Strategieberatungen wie AT Kearney, Boston Consulting, Ernst & Young, McKinsey, Mercer, Roland Berger etc.
- Marktforshungsinstitute wie Frost&Sullivan, TNS Emnid etc.
- Banken wie Commerzbank, DB Research etc.

Der einfachste Weg für die Datenrecherche ist der Weg über Google. Hierüber finden sich tagesaktuell alle verfügbaren Dokumente im Internet. Allerdings besteht genau die Schwierigkeit darin, aus allen verfügbaren Dokumenten das Gewünschte zu finden. Trotz Eingrenzung durch Suchbegriffe ist der Rechercheaufwand oftmals erheblich.

1.3 Auftrag des Projekts

Die obigen Ausführungen legen den Schluss nahe, dass die Möglichkeit, Zugriff auf einen konsolidierten Datenpool mit Daten zu Innovationsfeldern und Studien zu haben, eine wertvolle Bereicherung für alle Akteure darstellen würde, die sich mit innovationspolitischen Fragestellungen auseinandersetzen. Die zugrunde liegende Datenbasis einer solchen Datenplattform könnte nicht nur Datendefizite aufdecken und einen komfortablen Zugriff ermöglichen, sondern zusätzlich auch als Basis für weiterführende Analysen und Forschungen dienen.

2 Der Weg zur Rechercheplattform

2.1 Operationalisierung

Die Plattform wurde in ihren Grundzügen innerhalb der ersten drei Monate der Projektlaufzeit aufgebaut und anschließend weiter optimiert sowie mit Datensätzen „gefüllt“. Zunächst wurde aber ein Realisierungskonzept erstellt, um sich so dem inhaltlichen Aufbau des Rechercheportals zu nähern. Als Ausgangsüberlegung dienten die folgenden beiden Prämisse:

1) Die Datenbank muss die Funktion einer Suchmaschine erfüllen, um technologiefeldrelevante Studien/Berichte und Daten recherchieren zu können, die eingepflegt wurden.
2) Die Datenbank soll zusätzliche Informationen zu einzelnen Indikatoren auf „Faktenblättern“ darstellen (Umsätze, Beschäftigungszahlen usw.).

Es waren zahlreiche Iterationsschleifen notwendig, um zu der endgültigen Struktur der Webseite zu kommen. Es wird in diesem Bericht auf die Prozessbeschreibung zugunsten einer reinen Ergebnisdarstellung verzichtet.

<table>
<thead>
<tr>
<th>Technologiefelder</th>
<th>Unterkategorien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto- und Fahrzeugtechnik</td>
<td></td>
</tr>
<tr>
<td>Biotechnologie</td>
<td>Rote Biotechnologie/Grüne Biotechnologie/Weiße Biotechnologie</td>
</tr>
<tr>
<td>Erneuerbare Energien</td>
<td>Windenergie/Solarenergie/Wasserkraft/Geothermie/Bio-basierte Energie</td>
</tr>
<tr>
<td>Gesundheitsforschung und Medizintechnik</td>
<td>Telemedizin</td>
</tr>
<tr>
<td>Informations- und Kommunikationstechnologien</td>
<td>Software/Hardware/Dienstleistungen und Anwendungen/Telematik</td>
</tr>
<tr>
<td>Luft- und Raumfahrt</td>
<td>Luftpahrt/Raumfahrt</td>
</tr>
<tr>
<td>Mikrosystemtechnik</td>
<td>RFID</td>
</tr>
<tr>
<td>Nanotechnologie</td>
<td></td>
</tr>
<tr>
<td>Optische Technologien</td>
<td></td>
</tr>
<tr>
<td>Produktionstechnologie</td>
<td></td>
</tr>
<tr>
<td>Umwelttechnologien</td>
<td></td>
</tr>
<tr>
<td>Werkstofftechnologien</td>
<td></td>
</tr>
<tr>
<td>Querschnittsthemen</td>
<td></td>
</tr>
<tr>
<td>Mittelstand</td>
<td></td>
</tr>
<tr>
<td>Technologie und Innovation</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Erfahrungen in der Umsetzung

Ein zentrales Ziel des Projekts war es, Erfahrungen bei der Erstellung und Nutzung der Plattform im Testbetrieb zu generieren, um so die externe Bedarfslage, die notwendigen Ressourcenaufwendungen sowie Optimierungspotenziale zu identifizieren. Im nachfolgenden Kapitel haben wir diese Erfahrungen aus der Innen- wie der Außenperspektive zusammengetragen.

Die Innensicht

Zu betonen ist, dass bei dieser Suche gezielt nach einem Dokument recherchiert wurde, dessen Existenz bereits bekannt war, das aber dennoch nicht über die Webseiten der EU gefunden werden konnte. Aus diesen und anderen Versuchen wurde geschlossen, dass bei einer ungerichteten Suche mit Schlagwörtern auf den EU Webseiten zahlreiche Dokumente unentdeckt bleiben. Alles in allem scheint also der Suchweg über Google das beste Mittel der Wahl und der schnellste Weg zum Ziel zu sein. Für die Recherche bedeutete dies, dass mit gezielten Suchwortkombinationen mittels Google nach Treffern gesucht worden ist.

1 Stand der Google-Suche: 27.02.2007
2 http://ec.europa.eu/biotechnology/pdf/policypaper_de.pdf
Im positiven Fall werden die Einträge markiert, so dass sie im nächsten Schritt auf dem Rechercheportal eingestellt werden konnten.

In ersten Diskussionen des Rechercheportals R-ITA mit potenziellen Nutzern wurde wiederholt die Frage gestellt, warum Nutzer eigentlich R-ITA verwenden sollten, um Informationen zu einem Technologiefeld zu erhalten, wenn sich doch mit der „besten Suchmaschine der Welt“ – also mit Google – alles finden lässt, was irgendwo auf der Welt verfügbar ist. In der Tat sind mit Google riesige Datenmengen verfügbar. Bei der Eingabe des Suchbegriffs „Optische Technologien“ werden z.B. ca. 1,5 Mio. Links angegeben. Die enorme Zahl legt den Eindruck nahe, dass mit einer Google-Recherche praktisch alle relevanten Dokumente zu einem Themenfeld auffindbar sind. Tatsächlich ist aber zu hinterfragen, ob 1,5 Mio. Treffer die Datensätze werden für die Nutzer sichtbar.

Im Folgenden wollen wir beschreiben, dass Google zwar eine Vielzahl mehr Treffer bietet als R-ITA, um aber an die auf R-ITA verfügbaren Informationen zu einem Technologiefeld zu kommen, muss bei Google erheblich mehr Zeit aufgewendet werden. Bei R-ITA erhält der Nutzer mit einem Klick eine Liste relevanter Dokumente zu einem Technologiefeld: chronologisch sortiert, überschaubar, und mit zahlreichen Suchfunktionen wie etwa einer Volltextsuche.

Gesetzt dem Fall, es sollen nur Studien und vergleichbare Dokumente gesucht werden (Einschränkung „Dokumententyp PDF“), so werden bei Google immer noch 432.000 Dokumente angezeigt. Von dieser schier ungläublichen Fülle bildet R-ITA nur 0,01% ab. Diese Datenbasis ist zwar weiter recherchierbar, aber nur 1.000 Einträge von den 432.000 Dokumenten sind tatsächlich auf den 100 zugänglichen Google-Seiten zu sehen. Auf Google müsste es eigentlich alles geben, was von Interesse ist. Schaut man sich jeden Eintrag nur 1 Minute an, so braucht man für die 1.000 sichtbaren Einträge bei Google aber bereits 16,6 Stunden (oder 2,5 Tage).

Die Außenansicht

als inhaltliches Qualitätssicherungsverfahren eine Validierung der Datenbestände durch externe Experten eingeführt. Diese sollten auch Auskunft darüber geben, ob im jeweiligen Technologiefeld bereits vergleichbare Portale existieren.

Als Auswahlkriterium für die Experten wurde darauf Wert gelegt, dass die Experten einen aktuellen Überblick über ein spezifisches Innovationsfeld haben und sowohl technologische als auch wirtschaftliche, gesellschaftliche und innovationspolitische Aspekte gleichermaßen im Blick halten. Immer kamen Experten mit innovationspolitischem Hintergrund, zum Beispiel von einem Projektträger, aber auch Experten aus Forschungsinstitutionen, Verbänden oder Netzwerken.

Die Experten bekamen vorab Informationen zum Rechercheforum zu schenken (kurze Erläuterung zum Portal, Einführung in unseren Validierungsansatz) und konnten das Portal zunächst über einen eigens eingerichteten Zugang prüfen. Anschließend sollten sie in einem Interview folgende Fragen beantworten:

- Bildet das Rechercheforum mit seinem aktuellen Datenbestand in dem betreffenden Innovationsfeld in Annäherung die zentralen Studien ab?
- Fehlen online verfügbare Studien der letzten Jahre, die seit 2004 erschienen sind?
- Bildet das Portal einen Mehrwert zu den bereits vorhandenen und nach wie vor genutzten Suchoptionen (Fachdatenbanken, Portale, aber auch Suchmaschinen wie Google)?
- Sind Benutzerführung, Navigation und Funktionalität bereits zufriedenstellend und gibt es noch Optimierungspotenziale?
- Stehen die Experten bei Weiterführung des Portals für eine mögliche zukünftige Validierung bzw. die Zulieferung von Dokumenten zur Verfügung, würden sie also die weitere Arbeit aktiv unterstützen?

Als Auswahlkriterium für die Experten wurde darauf Wert gelegt, dass die Experten einen aktuellen Überblick über ein spezifisches Innovationsfeld haben und sowohl technologische als auch wirtschaftliche, gesellschaftliche und innovationspolitische Aspekte gleichermaßen im Blick halten. Immer kamen Experten mit innovationspolitischem Hintergrund, zum Beispiel von einem Projektträger, aber auch Experten aus Forschungsinstitutionen, Verbänden oder Netzwerken.

Die Experten bekamen vorab Informationen zum Rechercheforum (kurze Erläuterung zum Portal, Einführung in unseren Validierungsansatz) und konnten das Portal zunächst über einen eigens eingerichteten Zugang prüfen. Anschließend sollten sie in einem Interview folgende Fragen beantworten:

- Bildet das Rechercheforum mit seinem aktuellen Datenbestand in dem betreffenden Innovationsfeld in Annäherung die zentralen Studien ab?
- Fehlen online verfügbare Studien der letzten Jahre, die seit 2004 erschienen sind?
- Bildet das Portal einen Mehrwert zu den bereits vorhandenen und nach wie vor genutzten Suchoptionen (Fachdatenbanken, Portale, aber auch Suchmaschinen wie Google)?
- Sind Benutzerführung, Navigation und Funktionalität bereits zufriedenstellend und gibt es noch Optimierungspotenziale?
- Stehen die Experten bei Weiterführung des Portals für eine mögliche zukünftige Validierung bzw. die Zulieferung von Dokumenten zur Verfügung, würden sie also die weitere Arbeit aktiv unterstützen?

Im Hinblick auf Benutzerführung, Navigation und Funktionalität gab es eine Reihe sehr konkreter Verbesserungsvorschläge (z. B. stärkere Binnenstrukturierung eines Innovationsfelds), die in eine überarbeitete Version aufgenommen werden sollten. Grundsätzlich würde die Handhabung in der jetzigen Version aber als durchaus praktikabel beschrieben.

Aufgrund der als hoch eingeschätzten Relevanz waren auch einige Experten grundsätzlich bereit, das Portal im Falle einer Fortführung inhaltlich zu unterstützen. Für die weiter unten diskutierten Fortführungsoptionen heißt dies, dass die Einbeziehung von Experten als Multiplikatoren, Qualitätssicherungsinstanzen und Inputgebern eine mögliche Option darstellt.

Zielgruppe für die Befragung waren grundsätzlich alle Nutzerinnen und Nutzer, die im Kontext der Innovations- und Technikanalyse tätig sind bzw. einen Schwerpunkt ihrer Tätigkeiten in einem bestimmten Innovationsfeld haben. Für die Befragung bedeutete dies, dass die Befragten sowohl bestimmte Institutionentypen als auch die im Rahmen des Projekts zu erarbeitenden Technologiefelder abdecken sollten. Die adressierten Institutionen sollten in die folgenden Kategorien fallen:

- Politik/Ministerien
- Projektträger
- Forschungseinrichtungen
- Verbände/Netzwerke
- Consulting
- Industrieunternehmen
- Sonstiges (z. B. Beratungsstellen, Wissenschaftliche Institute)

Die Befragung zeigt in der Bilanz, dass die Nutzer mit dem Portal höchst zufrieden sind. 86 % der Befragten sagten schon jetzt, dass sie das Portal weiter nutzen würden. Die verbleibenden 14 % sind noch unentschieden. Weiter empfehlen würden alle Testnutzer das Portal. Interessant ist auch das Antwortverhalten auf die Frage, ob die Nutzer das Portal selbst aktiv unterstützen würden, z. B. durch das Empfehlen von Studien. Mehr als die Hälfte der Befragten (55 %) haben dies in der Befragung bestätigt, weitere 23 % sind hier noch unentschieden. Damit wird bereits jetzt ein beträchtliches Potenzial deutlich, das Portal auf eine breitere, Community-basierte Basis zu stellen.

Die befragten Personen haben sich auch dazu geäußert, welche Zielgruppen aus ihrer Sicht das Portal in Zukunft nutzen werden. Die verschiedenen genannten Zielgruppen (Projekträger, Fach-Communities, Industrie, Banken/ Beratungen, Interessenten und Öffentlichkeit) entsprechen genau den Gruppen, die bei
Die Rechercheplattform R-ITA – ein neuer Zugang zu Innovationsstudien und Branchenberichten

15

der Konzeption des Portals adressiert werden sollten. Insofern
wird das Portal das Ziel erfüllen können, die Ziel-Akteure im
Umfeld der Innovations- und Technikanalyse anzusprechen.

Die wenigen kritischen Äußerungen zu dem Rechercheportal
bezogen sich bei einem Kommentar allein auf die Optik der
Startseite. Die andere Person beschrieb, dass ein solches Por-
tal für Nutzer zur schnellen Einarbeitung in die Themen der
Hightech-Strategie generell wünschenswert ist, sah es jedoch
als kritisch, dass die Redaktion eines solchen Portals für die Re-
ccherche und Pflege fachlich und zahlenmäßig stark besetzt sein
muss, um dem Qualitätsanspruch gerecht zu werden und Ak-
zeptanz in den jeweiligen Communities zu erfahren. Nichtsde-
strotz wurden sehr konstruktive Hinweise gegeben, was bei
Fortführung des Portals beachtet werden sollte, um langfristig
erfolgreich sein zu können. Ein wichtiger Hinweis war zum Bei-
sam die Zusammensetzung und die Bewertungskriterien
der Redaktion transparent gemacht werden sollten.

3 Ein Zwischenfazit

Neben der Sammlung erster Erfahrungen bei Aufbau und Be-
trieb der Rechercheplattform hatte das Projekt auch die Frage
zu beantworten, ob mithilfe der Datensammlung Hinweise auf
Forschungslücken generiert werden können. Hierzu wurde der
Datenbestand zu Projektende einer statistischen Analyse unter-
zogen. Außerdem sollte das Projektteam abschätzen, welche
Weichenstellungen bei einem Dauerbetrieb der Plattform not-
wendig sind, welche Ressourcen hierfür benötigt werden und
welche Veränderungsoptionen bestehen.

3.1 Erste Ergebnisse

Um Schlüsselfaktoren zu identifizieren, wie auf Basis von In-
novationen ökonomischer Erfolg generiert werden kann, ist
eine qualitativ hochwertige Datenbasis generell wünschenswert. Vor diesem
Hintergrund sollte in Form einer Synopse erarbeitet werden,
welche Bereiche sich eher als „datenarm“ erweisen und damit
„blinde Flecken“ darstellen. Auch die Verfügbarkeit der Dat-
en in den untersuchten Innovationsfeldern sollte geprüft und
ihrer Qualität, Aktualität und Periodizität bewertet werden.
Die Synopse dient damit als Ausgangsbasis für die Ableitung
von Handlungsbedarf im Rahmen einer Innovations- und Tech-
nikanalyse und kann zu neuen Forschungsarbeiten anregen.
Die statistische Analyse der bis Ende 2007 im Rechercheportal
erfassten Dokumente bietet so erste Anhaltspunkte, um fol-
gende Fragen zu beantworten:

- Werden „Lücken“ im Datenbestand deutlich, die auf noch
wenig bearbeitete Fragestellungen hinweisen und damit
weiteren Analysebedarf deutlich machen?
- Lässt sich das Rechercheportal mit vertretbarem Aufwand
weiterführen, aktualisieren oder ausweiten?

Absolute Häufigkeit

<table>
<thead>
<tr>
<th>Fachgebiet</th>
<th>Absolute Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erneuerbare Energien</td>
<td>300</td>
</tr>
<tr>
<td>Nanotechnologie</td>
<td>250</td>
</tr>
<tr>
<td>Biotechnologie</td>
<td>200</td>
</tr>
<tr>
<td>Automobil- und Fahrzeugtechnik</td>
<td>150</td>
</tr>
<tr>
<td>Gesundheitsforschung und Medizintechnik</td>
<td>100</td>
</tr>
<tr>
<td>Luft- und Raumfahrt</td>
<td>70</td>
</tr>
<tr>
<td>Mikrosystemtechnik</td>
<td>50</td>
</tr>
<tr>
<td>Umwelttechnologie</td>
<td>30</td>
</tr>
<tr>
<td>Optische Technologien</td>
<td>10</td>
</tr>
</tbody>
</table>

Die Steigungsrate ergibt sich nach unserer Einschätzung aus zwei Faktoren:
- Der „natürliche Schwund“ älterer Dokumente im Internet, da eine Tendenz zur Entfernung von Dokumenten nach einer gewissen Verweildauer besteht.
- Die steigende Relevanz der dynamischen Innovationsfelder, die sich auch in tendenziell steigenden Publikationszahlen niederschlagen dürfte.
Die Dokumente auf dem Rechercheportal unterscheiden sich unter anderem im Hinblick auf die Nutzung von eigens erhobenen Primärdaten bzw. die sekundäre Nutzung bereits vorhandener Daten aus der amtlichen Statistik oder aus anderen Studien. Im Vergleich zeigt sich, dass für die Branchentechnologiefelder deutlich stärker mit eigenen Daten gearbeitet wird, während für die Querschnittsfelder stärker auf die – weniger vorhandenen – Primärdaten Dritter zurückgegriffen werden muss. Dies liegt aus unserer Sicht nicht zuletzt daran, dass die Querschnittsfelder deutlich aufwändiger in der Generierung von Primärdaten sind, da z.B. die zu befragenden Unternehmen nicht nach der sonst nutzbaren Branchenzuordnung identifiziert werden können.

Den Dokumenten im Rechercheportal wurden fünf verschiedene, übergeordnete Themenfelder zugeordnet:
- Marktorientierte Fragestellungen
- Technologieorientierte Fragestellungen
- Gesellschaftliche Fragestellungen
- Innovations- und förderpolitische Fragestellungen
- Qualifikation, Aus- und Weiterbildung

Dadurch sollten die untersuchten Technologiefelder schnell charakterisiert werden können. Es wird deutlich, dass die Akzente bei den einzelnen Technologiefeldern sehr unterschiedlich gesetzt sind. Für das Themenfeld Markt zeigt sich ziemlich deutlich, dass die Dokumente der Querschnittstechnologiefelder etwas weniger Bezug zu marktrelevanten Fragestellungen haben als die Technologiefelder mit eindeutigem Branchenbezug. Im Themenfeld gesellschaftlicher Fragestellungen werden insbesondere die Nanotechnologie und die Umwelttechnologie herausgehoben: Der Bereich Nanotechnologie aufgrund ihrer potenziell toxischen Auswirkungen und die Umwelttechnologie wegen ihrer potenziell nachhaltigen Wirkung. Die Mikrosystemtechnik hat vor allem im Hinblick auf das Thema RFID (für Privacy-Fragen) einen hohen Anteil an Dokumenten mit gesellschaftlicher Fragestellung. Die Innovationspolitik akzentuiert die Umwelttechnologien (hoher normativer Anspruch), die Luft- und Raumfahrt (insbesondere die Raumfahrt ist mit hohen staatlichen Investitionen gefördert), aber auch die beiden Querschnittsfelder Mikrosystemtechnik und Optische Technologien mit hohem staatlichem Engagement. Qualifikationsaspekte zeigen sich insgesamt recht selten behandelt; am ehesten noch ist dies in jungen Technologiefeldern mit Querschnittscharakter der Fall.

Wertet man unsere Datensätze nach Auftraggebern aus, so lassen sich neben den Hightech-Feldern des BMBF (Optische Technologien, Mikrosystemtechnik, Nanotechnologie, Medizintechnik und Biotechnologie) auch Technologiefelder identifizieren, die deutlich stärker durch andere Auftraggeber (z.B. Umwelttechnologie durch BMU, Erneuerbare Energien durch Verbände) finanziert werden.

Die statistische Auswertung zeigt, dass für eine Reihe von Technologiefeldern nur wenige Institutionen bereits für einen Gutteil der Studien verantwortlich sind. Gerade in den Querschnittstechnologiefeldern deckt eine einzige Institution bereits 10% und mehr aller Studien ab, die drei am stärksten vertretenen Institutionen zwischen 22% und 47%. Für die Branchentechnologiefelder ist die Quellenbasis hingegen deutlich breiter. Für die Bewertung der aktuellen Datenlage heißt dies: In Querschnittsfeldern ist die Erstellung von Studien auf relativ wenige Akteure beschränkt, die das Bild des jeweiligen Feldes weitgehend bestimmen. In den Branchenfeldern ist die Quellenlage vielschichtiger. Für eine potenzielle Fortführung des Rechercheportals heißt dies: Die Querschnittsfelder werden durch eine gezielte Dokumentensuche bei den bereits jetzt häufig genutzten Quellen vermutlich einfacher zu aktualisieren sein. Für die Branchenfelder wird eine Suche bei wenigen Institutten nicht ausreichen.

Werden die Studien nach Typus des Studienerstellers verglichen, zeigt sich, dass bestimmte Technologiefelder stärker von spezifischen Akteuren analysiert werden. Es zeigt sich, dass die Projekträger eine große Rolle, insbesondere für die drei jungen Querschnittstechnologiefelder Optische Technologien, Mikrosystemtechnik und Nanotechnologie, spielen. Offenbar erstellen die Projektträger für diese drei Felder einen großen Anteil der auf dem Rechercheportal verfügbaren Dokumente. Öffentliche Institutionen, also z.B. Ministerien, sind mit über 50% als Quelle herausragend im Bereich Umwelttechnologien präsent, aber auch für die Felder Optische Technologien, Biotechnologie und Automobil- und Fahrzeugtechnik mit über 20%. Auch Verbände spielen (neben dem Projekträger) eine wichtige Rolle für die Mikrosystemtechnik und die Optischen Technologien. Ebenso wird die Medizintechnik von den Verbänden deutlich stärker thematisiert als andere Technologiefelder. Öffentliche wissenschaftliche Institutionen, also z.B. Universitäten, erstellen den Großteil der Dokumente zum Technologiefeld Automobil- und Fahrzeugtechnik. Beratungsunternehmen haben einen Schwerpunkt im Bereich der Automobilindustrie, der Medizintechnik und der Biotechnologie.

3.2 Ausblick und Zukunftspotenziale der Rechercheplattform

Ein Portal wie R-ITA wird nur dann seinen positiven Eindruck bei den Nutzerinnen und Nutzern behalten können, wenn es kontinuierlich und sorgfältig gepflegt wird. Eine Kommerzialisierung in der Form, dass für die Nutzung des Portals gezahlt wird oder Sponsoren gefunden werden, wurde von den angesprochenen Personen unserer Befragung als eher unrealistisch eingeschätzt. Sowohl die Bereitschaft der Institutionen, für eine solche Dienstleistung zu zahlen als auch für ein Sponsoring zur Verfügung zu stehen, wurde in unseren geführten Gesprächen tendenziell verneint. An dieser Stelle zeigt sich ein klassisches Marktversagen, denn auf der einen Seite konnte ein großes Interesse und damit eine Nachfrage an dem Rechercheportal belegt werden, auf der anderen Seite ist die Bereitschaft für Suchmaschinen und Datenbanken zu bezahlen eher gering.

Für beide beschriebenen Varianten entfällt damit auf keinen Fall der Rechercheaufwand vollständig, außerdem ist die Qualitätssicherung weiterhin durch das Redaktionsteam zu gewährleisten. Trotz einer fokussierten Rechercheroutine (bei besser bekannter Quellinstitutionen, Suchbegriffen etc.) kann daher davon ausgegangen werden, dass der Rechercheaufwand in ähnlicher Intensität wie in der Pilotphase bestehen bleibt.

Option: Fortführung des Status quo

Die statistische Auswertung der bislang eingestellten Daten zeigt, dass sich der Umfang der potenziell zu erfassenden Dokumente in der Zukunft eher erhöhen wird. Zum jetzigen Zeitpunkt (Stand: März 2008) sind ca. 1.100 veröffentlichte Publikationen in der Datenbank, die sich in unterschiedlichen Anteilen auf die verschiedenen Innovationsfelder und Querschnittsfelder verteilen. Trotz einer fokussierten Rechercheroutine (bei besser bekannten Quellinstitutionen, Suchbegriffen etc.) kann daher davon ausgegangen werden, dass der Rechercheaufwand in ähnlicher Intensität wie in der Pilotphase bestehen bleibt.

Dies gilt vor allem, so lange die Recherche zentral über eine Redaktion realisiert wird. Falls ein stärker dezentraler Ansatz realisiert wird, könnte sich der Aufwand entsprechend reduzieren. Zwei Möglichkeiten sind dabei in Betracht zu ziehen:

- Eine dezentrale Eingabe durch Autoren, die ein Interesse an der Verbreitung und Verfügbarkeit ihrer Studien auf dem Rechercheportal R-ITA haben. Voraussetzung hierfür wäre ein entsprechendes Potenzial für Technologiefelder anzuwenden und für das Projekt zu gewinnen, auch im weiteren Verlauf wird ein Aufwand darin bestehen, die „Patentschaften“ zu koordinieren.

Für beide beschriebenen Varianten entfällt damit auf keinen Fall der zentrale Rechercheaufwand vollständig, außerdem ist die Qualitätssicherung weiterhin durch das Redaktionsteam bzw. den Plattformbetreiber sicherzustellen.

Option: Erweiterung der Plattform um weitere Themenfelder

Die jetzige Pilotversion enthält nur eine begrenzte Auswahl an Technologiefeldern. Um einen wirklich umfassenden Überblick zu geben – vor allem wenn sich die Technologiefelder an denen der Hightech-Strategie orientieren sollen – sind weitere Technologiefelder mit aufzugeben.

In der „erweiterten Option“ sollte zudem versucht werden, Paten für Themenfelder zu gewinnen, die zum einen als Experten für die Validierung des Datenbestands hilfreich wären sowie die Redaktion auf aktuelle Studien aufmerksam machen und zum anderen auch eine Multiplikatorfunktion erfüllen könnten, indem sie die Bekanntheit des Portals in den entsprechenden Fach-Communities vergrößern.

Neben einer Fortführung der Plattform in der gegenwärtigen Form gibt es weitere Optionen für eine Weiterentwicklung:

Ausweitung auf weitere Technologiefelder

Internationale Ausrichtung

Querschnittsthemen

Erhöhte Einbeziehung der Nutzer - Bewertungsoptionen

Ergänzung zu themenfeldspezifischen, redaktionellen Inhalten

Aufteilung der Plattform

Datenanalyse wirtschaftlich aktiver Innovationsfelder

Dr. Arno Brandt, Marc Wilken, Kerstin Brunken

1 Einführung

Belastbare Daten zur Innovationsleistung der deutschen Wirtschaft sind heute für viele politische Entscheidungen eine unverzichtbare Grundlage. Dies gilt umso mehr dort, wo sich die Politik um die gezielte Förderung innovationsorientierter Branchen, Wirtschaftszweige oder Technologien bemüht. Mittlerweile werden im nationalen und internationalen Kontext kontinuierlich Innovationsprozesse analysiert. Im Ergebnis zeigt sich eine Datenvielfalt, die oft kaum überschaubar und selten vergleichbar ist. Studien der Innovations- und Technikanalyse sind beispielsweise insbesondere dafür konzipiert worden, Informationen über die Innovationsaktivität auf Bundesebene zu liefern und diese im internationalen Vergleich zu bewerten. Die gewählten Indikatoren bilden so hervorragend die Entwicklung der Gesamtwirtschaft ab, bleiben jedoch in der Regel auf einer sehr hoch aggregierten Ebene.

Eine Analyse für ein junges Technologiefeld, das reichlich Innovationspotenzial verspricht, ist hingegen auf der Basis vorhandener statistischer Branchendaten in der Regel nicht möglich, da es sich oftmals nicht der Wirtschaftszweigesystematik der öffentlichen Statistik zuordnen lässt. Daraus ergibt sich für die vorliegende Untersuchung die Frage, inwieweit diese Technologiefelder nach der herkömmlichen statistischen Klassifizierung in deutlicher Abgrenzung zu den anderen Wirtschaftszweigen darstellbar sind und welche alternativen Analysemöglichkeiten existieren.

Vor diesem Hintergrund förderte das BMBF im März 2007 eine Forschungsarbeit zur „Entwicklung einer datenbankbasierten Plattform für die Bereitstellung innovationsstatistischer Daten“. Im Rahmen dieses Projekts entstand der Teilbericht zur „Entwicklung einer Methodik zur Datenanalyse wirtschaftlich aktiver Innovationsfelder“, der dieser Darstellung zugrunde liegt.

2 Bestandsaufnahme und Entwicklung der Methodik

1) Die betrieblichen Kapazitäten und Kompetenzen müssen so ausgerichtet sein, dass Potenziale zur Schaffung von Innovationen in ausreichender Form vorhanden sind.
2) Die innovierenden Institutionen und Unternehmen müssen auf eine innovationsorientierte Infrastruktur zurückgreifen können. Das gilt sowohl für harte Infrastrukturen (z. B. verkehrbauliche Maßnahmen oder die Verfügbarkeit von Bildungseinrichtungen und Laboren) als auch für weiche Infrastrukturen (kreatives, innovatives Milieu).

Eine von der Innovationsforschung weitgehend akzeptierte Klassifizierung stellt die Einteilung der Innovationsindikatoren nach Input-Indikatoren sowie nach Throughput- und Output-Indikatoren dar. Inputindikatoren beziehen sich dabei auf die Ressourcen, die für den Innovationsprozess eingesetzt werden. So zählen beispielsweise die Anzahl der FuE-Beschäftigten, Ausgaben zur Beschaffung von Wissen und Investitionen in innovationsrelevante Güter zu den Indikatoren dieser Kategorie. Throughput-Indikatoren sind Indikatoren, die die Zwischenergebnisse im Innovationsprozess darstellen. Klassische Indika-
Datenanalyse wirtschaftlich aktiver Innovationsfelder

Die zu untersuchenden Technologiefelder fügen sich oftmals nicht in die Wirtschaftszweigesystematik der öffentlichen Statistik und lassen sich also nur bedingt einer traditionellen Branche zuordnen. Es stellt sich daher die Frage, inwiefern die fokussierten Technologiefelder nach der herkömmlichen statistischen Klassifizierung trennscharf zu anderen Wirtschaftszweigen dargestellt werden können. Im Folgenden sollen drei Arten von Technologiefeldern untersucht werden, die nach dem Grad der Abbildbarkeit in der öffentlichen Statistik kategorisiert werden können:

Zweitens kommen Technologiefelder in den Blick, die sich während ihrer noch jungen Entwicklung und Etablierung am Markt bereits teilweise zu spezifisch-identifizierbaren Wirtschaftszweigen entwickelt haben, jedoch in amtlichen Klassifikationsen noch unzureichend erfasst werden. Das führt dazu, dass sie im Rahmen einer Innovationsuntersuchung nur mit großem Aufwand aus sekundärstatistischen Quellen herausgefiltert werden können und deren Abbildung auf diesem Wege letztlich nicht vollständig gelingen kann.

Die dritte Gruppe bilden Technologiefelder, deren Verfahren und Techniken aufgrund ihres jungen Bestehens noch keine sehr breite Aufstellung am Markt vorweisen können. Sie werden daher zumeist innerhalb bestehender Unternehmen traditioneller Branchen zur Anwendung gebracht und besitzen noch nicht in ausreichendem Maße die Befähigung zur Ausbildung eigener Wirtschaftszweige.

Für diese Untersuchung wurden drei Technologiefelder ausgewählt, die sich jeweils einer der beschriebenen Kategorien zuordnen lassen. Die Informations- und Kommunikationsdienstleistungen sind bereits in der amtlichen Klassifizierung der Wirtschaftszweige abgebildet. Dies trifft für den Teilbereich...

2.1 Relevante Innovationsindikatoren

Die verfügbaren Studien wurden insbesondere dafür konzipiert, Informationen über die Innovationsaktivität auf Bundesebene zu liefern und diese im internationalen Vergleich zu bewerten. Dabei ist zumindest in weiten Teilen eine differenzierte Analyse für das Verarbeitende Gewerbe sowie für den Dienstleistungssektor gegeben. Regional betrachtet wird in der Regel zumindest ein Unterschied zwischen der ost- und der westdeutschen Entwicklung aufgezeigt, eine tiefere regionale Gliederung findet nicht statt.

Die bundesdeutschen Innovationsbewertungen weisen ein breites Spektrum an Indikatoren auf. Dabei eignet sich die Mehrheit der Indikatoren jedoch aufgrund ihrer groben sektoralen Gliederung zunächst nicht für die Messung der Innovationsleistung innerhalb einzelner Technologiefelder und bietet auch nur in wenigen Fällen eine regionale Differenzierung.

Für diese Untersuchung wurde schließlich ein Katalog von 20 Indikatoren ausgewählt, der die Grundlage für die anschließende Betrachtung der Innovationsaktivitäten und -leistungen der drei exemplarischen Technologiefelder bildet.

2.2 Wissensvernetzung als Voraussetzung von Innovationsprozessen

Der aufgezeigte Katalog bietet eine übersichtliche Zahl an Indikatoren, die das Innovationsverhalten innerhalb der jeweiligen Technologiefelder wiedergeben. Innovationserfolge werden anhand dieser Indikatoren ebenso analysiert wie Innovationspotenziale, die sich durch Daten zur Qualifikation sowie Informationen zu FuE-Aktivitäten ermitteln lassen. Die bisher beschriebenen Innovationsindikatoren liefern jedoch keine Darstellung von Prozessen, die im Sinne des Konzepts der „Re-

<table>
<thead>
<tr>
<th>Zahl der Unternehmen</th>
<th>Zahl der Beschäftigten</th>
<th>Umsatz</th>
<th>Zahl der Gründungen</th>
<th>Exporte (Auslands-umsatz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochqualifiziertenquote</td>
<td>Anzahl Beschäftigte in ausgewählten Berufsgruppen</td>
<td>Zahl Studierende an (Fach-) Hochschulen in ausgewählten Studienfächern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteil FuE-Personal an Beschäftigung</td>
<td>Anteil FuE-Ausgaben am Umsatz/ Innovations-aufwendungen</td>
<td>Forschungsförderung (BMF; BMWi; DFG)</td>
<td>Lehr- und Forschungspersonal an (Fach-) Hochschulen in ausgewählten Studienbereichen/ -fächern</td>
<td></td>
</tr>
<tr>
<td>Zahl der Patent-anmeldungen/ Schutzrechte</td>
<td>Zahl der Produktinnovatoren</td>
<td>Zahl der Prozessinnovatoren</td>
<td>Umsatzanteil/ Kostenreduktion mit/ durch Innovation</td>
<td></td>
</tr>
<tr>
<td>Informationsquellen für Innovationen</td>
<td>FuE-/Innovations-koooperationen</td>
<td>Innovationshemmnisse</td>
<td>Neuerungen in Organisation und Marketing</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 2: eigene Darstellung

Katalog relevanter Innovationsindikatoren

In Niedersachsen wurde erstmals am Beispiel der Metropolregion Hannover-Braunschweig-Göttingen, einer der wirtschaftlichen Kernregionen des Landes, eine umfassende Analyse der Wissensnetzwerke durchgeführt (vgl. NORD/LB 2007). Dazu wurden die Kooperationsbeziehungen aller wirtschaftsrelevanten Institute bzw. Fakultäten der regionalen Hochschulen, außeruniversitären Forschungseinrichtungen sowie innovationsorientierten Betriebe erfasst.¹

¹ Untersuchungsgegenstand waren rund 500 Hochschul- bzw. Forschungsinstitute sowie 750 innovationsorientierte Betriebe.
3 Exemplarische Auswertung ausgewählter Technologiefelder

Anhand der drei genannten Technologiefelder soll nun exemplarisch aufgezeigt werden, wie die ausgewählten Innovationsindikatoren in den Daten der bestehenden Sekundärstatistiken abgebildet werden. Darüber hinaus werden deskriptive Analysen (Studien, Gutachten u. ä.) herangezogen. Dabei gilt es unter anderem aufzuziehen, welche der Innovationsindikatoren – sowohl Input- als auch Output-Faktoren – in den vorhandenen Datensätzen und Studien bisher nicht abgebildet werden und wo eine empirische Datenerhebung sinnvoll scheint. Abschließend werden Teilauswertungen der o. g. Netzwerkanalyse für die drei Technologiefelder vorgestellt, um zu prüfen, ob und in welchem Maße diese Methode weiterführende Aussagen über das regionale Innovationsgeschehen ermöglicht.

3.1 IuK-Dienstleistungen

Geeignet ermöglichen die Statistiken mit Daten zu bestimmten, den IuK-Dienstleistungen zuzuordnenden Berufsgruppen, Produkten und Tätigkeitsfeldern die Abbildung weiterer Indikatoren. Dazu zählen die Beschäftigung nach Berufen, die Patentanmeldungen und die Hochschulkapazitäten. Auch diese ergänzenden, nicht WZ-basierten Indikatoren sind für die IuK-Dienstleistungen gut darstellbar, da es sich hier um ein bereits vergleichsweise deutlich etabliertes Technologiefeld handelt.

3.2 Rote Biotechnologie

Die Biotechnologie stellt zwar mit rund 500 Unternehmen in Deutschland ein bereits seit mehr als zehn Jahren vergleichsweise fest etabliertes Technologiefeld dar (vgl. BIOCOM 2007), eine Abgrenzung als eigenständige Branche gemäß der Systematik für Wirtschaftszweige (WZ) gelingt allerdings nicht. Eine Vielzahl der biotechnologischen Unternehmen sind in den Wirtschaftszweigen Forschung und Entwicklung sowie Chemie/Pharma tätig (vgl. Abb. 3 2006), aber auch die Gesundheitsdienstleistungen, Labors oder die Landwirtschaft verbuchen zahlreiche Biotech-Unternehmen auf sich. Im Umkehrschluss ist allerdings nur ein sehr geringer Anteil der Pharma- und Chemiebranche oder des Wirtschaftszweiges Forschung und Entwicklung mit biotechnologischen Tätigkeiten betraut.

Als Grundlage für internationale Vergleiche der wirtschaftlichen Entwicklung der Biotechnologie formulierte die Organisation für wirtschaftliche Zusammenarbeit und Entwicklung (OECD) im Jahr 2004 eine einheitliche Definition. Demnach ist Biotechnologie „die Anwendung von Wissenschaft und Technik auf lebende Organismen, Teile von ihnen, ihre Produkte oder Modelle von ihnen zwecks Veränderung von lebender oder nichtlebender Materie zur Erweiterung des Wissensstandes, zur Herstellung von Gütern und zur Bereitstellung von Dienstleistungen.“ Gemeinsam mit dieser Definition empfiehlt die OECD ergänzend immer eine listenbasierte Definition einzelner
Verfahren oder Methoden (z. B. Methode der Bioverfahrenstechnik, DNA, Bioinformatik) heranzuziehen.

Bei der Betrachtung der Studien und Gutachten wird deutlich, dass trotz fehlender Klassifizierung der „Biotechnologie“ auf Basis der Wirtschaftszweigesystematik zahlreiche der vor festgelegten Indikatoren des Kataloges generiert werden können. Bei der Interpretation der Ergebnisse bleibt jedoch zu beachten, dass das Technologiefeld und die Unternehmen in den besagten Quellen nicht übereinstimmend abgegrenzt werden. Die unterschiedlichen konzeptionellen Ansätze führen zu Ergebnissen, die nur mit Einschränkung und unter Berücksichtigung der methodischen Vorgaben vergleichbar sind.

Auch ist zu beachten, dass in den verschiedenen Untersuchungen keine Untergliederung der Biotechnologie in einzelne Segmente vorgenommen wird. Daher ist nur eine Abschätzung der Werte anhand der relativen Verteilung der Segmente auf die Gesamt-Branche möglich. Nach der Unternehmensbetrachtung der BIOCOM AG sind 44,8 % der Unternehmen in den Bereichen Gesundheit/Medizin und Tiergesundheit tätig, also der Roten Biotechnologie zuzuordnen. Im Kerngebiet der Biotechnologie verzeichnet das Bundesamt für Statistik sogar 67 % der Unternehmen, die sich mit human- und veterinärmedizinischen sowie pharmazeutischen Entwicklungs- und Anwendungsstrategien befassen.

Die Auswertung des Mannheimer Innovationspanels auf Grundlage einer Textfeldanalyse führt nicht zu einem repräsentativen Resultat. Allerdings bietet das Mannheimer Unternehmenspanel die Identifikation der Unternehmen der Roten Biotechnologie, was eine Vollerhebung der statistischen Daten der Unternehmen der Roten Biotechnologie ermöglicht. Mit der Erfassung der Namen und Adressen aller Unternehmen ist auch eine Auswertung anderer Statistiken wie der Patentstatistik und der Erfassung der Tätigkeitsbeschreibungen in Bezug auf FuE erreichbar.

Die Entwicklung der Roten Biotechnologie ist als vergleichsweise etabliertes Technologiefeld bereits umfangreich im Rahmen von Studien und Gutachten beschrieben, was auch eine Betrachtung der Entwicklung des Technologiefeldes über einen längeren Zeitraum, zumindest ab dem Jahr 2000, ermöglicht. Die Studien beinhalten eine umfangreiche Datenbasis, sind aufgrund abweichender Definitionen der Roten Biotechnologie
jedoch nur bedingt vergleichbar. Sie bieten aber auch eine Betrachtung von ergänzenden Indikatoren, wie die Wirkstoff-Entwicklungphasen oder Finanzierungsinstrumente, die innerhalb der Roten Biotechnologie von besonderer Bedeutung für die Abschätzung der Innovationsleistungen und der Perspektiven dieses Technologiefeldes sind.

Im Rahmen einer Sonderauswertung der erwähnten Netzwerkanalyse gelang es zudem, bereits bekannte Kompetenzträger aus Wirtschaft und Wissenschaft, die im Bereich der Roten Biotechnologie tätig sind, innerhalb des regionalen Innovationsnetzes sichtbar zu machen. Auf diese Weise sind nicht nur die 17 bekannten Akteure aus der Region sichtbar geworden sondern auch ihre Kooperationsbeziehungen untereinander und zu anderen Sparten der Biotechnologie und des Kompetenzfeldes Life Sciences.

3.3 Nanotechnologie

Die Nanotechnologie kann als eine in vielen Bereichen eingesetzte Querschnittstechnologie nicht durch die Systematik der Wirtschaftszweige (WZ) abgebildet werden. Daher ist keine hinreichende Generierung von Daten aus den amtlichen Statistiken zur Analyse der Bedeutung und der Entwicklung dieses Technologiefeldes möglich. Auch in Statistiken, die nicht auf der WZ-Systematik beruhen, sondern Daten zur Nanotechnologie über andere Klassifikationen (Berufsschule, Studienbereiche) oder mit Hilfe von Stichwortrecherchen abbildet, ist keine eindeutige Auswertung für dieses Technologiefeld möglich. Eine Ausnahme stellen die Datenbanken zur Forschungsförderung und zu den Patenten dar, die anhand ausführlicher Stichwortfragabrosen annähernd befriedigende Ergebnisse für die statistische Darstellung der Nanotechnologie zur Verfügung stellen.

4 Schlussfolgerungen und Handlungsempfehlungen

Anhand einer exemplarischen Analyse der drei ausgewählten Technologiefelder Informations- und Kommunikationsdienstleistungen, Rote Biotechnologie und Nanotechnologie zeigt sich, dass die 20 festgelegten Indikatoren heute nur zu Teilen zu recherchieren sind. Die Generierung der Daten bedarf dabei eines sehr unterschiedlichen Zeit- und Kostenaufwandes. Außerdem liegen die Daten in sehr differenzierter Qualität vor. Insbesondere jene Technologiefelder, die mit Hilfe der Systematik der Wirt-

2 Ein Nanometer (nm) bezeichnet den millionsten Teil eines Millimeters.

Bei der Analyse der exemplarischen Technologiefelder zeigt sich darüber hinaus, dass jene Indikatoren, die aus der deutschen Innovationserhebung (Mannheimer Innovationspanel) generiert werden, theoretisch auch für die einzelnen Technologiefelder abbildbar wären. Grundlage hierfür wären jedoch – zumindest für jene Technologiefelder, die nicht auf Basis der 2-Steller der Wirtschaftszweigsystematik definierbar sind – unternehmensbezogene Sondererhebungen, für die ein deutlicher Mehraufwand erforderlich wäre. Ähnliche Sondererhebungen werden aktuell nicht durchgeführt. Die deutsche Innovationserhebung kann jedoch als gute Ausgangsbasis für eine umfassendere und detaillierte Darstellung von Innovationsaktivitäten bezeichnet werden.

Im Hinblick auf die dargestellten Ergebnisse und mit dem Ziel, zukünftig eine einheitliche Grundlage von Daten – nicht zuletzt als Unterstützung von strategischen Entscheidungen der Technologieförderpolitik – zur Verfügung stellen zu können, bietet sich die Einführung des vorgestellten Indikatorenkataloges als Grundgerüst für eine Daten- und Potenzialanalyse wirtschaftlicher aktiver Innovationsfelder an. Dabei bleibt zu beachten, dass die Heterogenität der Technologiebereiche zusätzlich die Betrachtung branchenspezifischer Indikatoren erfordert. Vor diesem Hintergrund ist neben einer Anwendung eines einheitlichen Indikatorenkataloges, der insbesondere einen schnellen und vergleichenden Überblick über den Entwicklungsstand einzelner Technologiefelder bietet, auch künftig die Förderung branchenspezifischer Studien und Gutachten gefordert.

Auf Basis der Betrachtung der exemplarischen Technologiefelder IuK-Dienstleistungen, Rote Biotechnologie und Nanotechnologie lassen sich für die Technologiepolitik Deutschlands Handlungsempfehlungen formulieren, die im Folgenden dargestellt werden.

4.1 Anpassung von Statistiken

Hinsichtlich der Verwendung von Daten aus den amtlichen Statistiken zeigt sich die Grenze bei der Definition des jeweiligen Technologiefeldes. Mit Ausnahme einiger weniger Statistiken, die auf der Basis von Kennwörtern, Berufsgruppen oder Studienfächern aufbauen, gründen die meisten betrachteten Indikatoren auf der Systematik der Wirtschaftszweige. Damit wird die Diskrepanz zwischen der Strategie, die Entwicklung junger Technologiefelder abzubilden und angemessen zu fördern, und der strategisch-wissenschaftlichen Begleitung des Technologieprozesses deutlich.

Insbesondere die im Rahmen der Hightech-Strategie des Bundes definierten 17 Zukunftsfelder (vgl. BMF 2006), die aus Sicht der Bundesregierung von herausragendem nationalen Interesse sind sowie über wirtschaftliche und wissenschaftliche Potenziale verfügen, gilt es zu analysieren, zu bewerten und gezielt zu fördern. Um die Datenlage für die 17 Zukunftsfelder abschätzen zu können, wird im Folgenden eine Zuordnung dieser Felder zu den drei Typen statistischer Abbildbarkeit – auf denen auch die Auswahl der drei exemplarisch betrachteten Technologiefelder basierte – versucht. Dabei sind die Zukunftsfelder der ersten Gruppe eindeutig in der Systematik der Wirtschaftszweige darstellbar. Die zweite Gruppe umfasste jene Felder, die vergleichsweise gut etabliert sind, durch zahlreiche Studien beschrieben wurden und für welche vor allem eine Zuordnung eindeutig branchenrelevanter Unternehmen gelingt. Jene Zukunftsfelder, die hingegen eine ausgeprägte Querschnittsorientierung aufweisen, d.h. ihre Anwendung in zahlreichen funktional unterschiedlichen Branchen finden, und für welche nur erschwert Unternehmen ausgemacht werden können, die sich vorrangig mit der ausgewiesenen Technologie befassen, bilden die dritte Gruppe.

4.2 Innovationserhebung

Die deutsche Innovationserhebung, die nicht nur als Grundlage zahlreicher nationaler Analysen dient, sondern auch regelmäßig in europäische Innovationsvergleiche eingeht, stellt einen
umfassenden Katalog aussagekräftiger Indikatoren zur Verfügung. Teilweise wurden diese in den zusammengestellten Indikatorkatalog zur Daten- und Potenzialanalyse wirtschaftlich aktiver Technologiefelder integriert. Aktuell führt das Zentrum für Europäische Wirtschaftsforschung (ZEW) die Innovationserhebungen durch und fasst die Ergebnisse im Mannheimer Innovationspanel zusammen.

Die Innovationserhebung empfiehlt sich damit als zentrales Instrument für eine künftige Potenzialanalyse noch junger, wirtschaftlich aktiver Wirtschaftsbereiche. Es wird empfohlen, die Innovationserhebung weiter auszubauen und dahingehend zu optimieren, dass auch diejenigen Indikatoren des vorgeschlagenen Kataloges, die bisher nicht über die Erhebung erfasst werden, künftig in den Fragenkatalog integriert werden. Diese Ausdehnung ermöglicht den Aufbau einer Innovationsdatenbank aus einer Hand und garantiert die Vergleichbarkeit der Entwicklungen auch unterschiedlicher Technologiefelder.

Die exemplarische Betrachtung der drei ausgewählten Technologiefelder zeigt, dass auf Basis der bestehenden Erhebung aktuell keine Möglichkeit besteht, Informationen für jene Technologiebereiche, die nicht mit Hilfe der Systematik der Wirtschaftszweige abgebildet werden können, zu generieren. Da die Indikatoren aus der Erhebung jedoch explizit Hinweise zu Innovationsaktivitäten sowohl in der Produktions- als auch in der Prozessentwicklung geben, ist eine Ausweisung von Daten auch für diese Technologiebereiche, wie sie beispielsweise in der Hightech-Strategie definiert sind, anzustreben.

Für eine künftige Abschätzung der Innovationspotenziale junger wirtschaftlich aktiver Technologiebranchen ist eine Erweiterung der deutschen Innovationserhebung erforderlich. Dabei muss berücksichtigt werden, dass diese ein deutlich größeres Auftragsvolumen voraussetzt, als derzeit durch das BM BF zur Verfügung gestellt wird. Die Vergabe der technologiefeldbezogenen Erhebung sollte über einen Ausschreibungsverfahren erfolgen, an welchem sich sowohl wissenschaftliche Forschungseinrichtungen als auch brancheninterne Verbände und Kompetenzträger beteiligen können.

Eine nachhaltige Daten- und Potenzialanalyse der Innovationsfelder ist daneben nur gewährleistet, wenn diese keine einmalige Momentaufnahme darstellt, sondern künftig regelmäßig Informationen generiert werden. Es wird daher empfohlen, die Innovationserhebung innovationsrelevanter Wirtschaftsbereiche im Rahmen eines regelmäßig durchgeführten Panels durchzuführen.

4.3 Zusammenarbeit mit Verbänden/Identifikation technologiespezifischer Indikatoren

Bei der Erfassung der spezifischen Technologiefelder im Rahmen einer umfassenden Indikatorenauswertung kommt einer engen Zusammenarbeit mit den etablierten Interessensverbänden und -vereinen der fokussierten Unternehmen ein hoher Stellenwert zu. In den Verbänden sind oftmals große Teile derjenigen Unternehmen organisiert, die im Rahmen der High-tech-Strategie den definierten Technologiefeldern zugeordnet werden können, jedoch selten über die amtliche Wirtschafts-zweigesystematik identifizierbar sind. Über die Mitgliederlisten der Verbände lässt sich also schon ein wichtiger Zugang zu Informationen der Unternehmen herstellen. Dabei muss für jedes einzelne Technologiefeld geprüft werden, ob die Mitgliederlisten der entsprechenden Verbände einen ausreichenden Anteil der Gesamtzahl der dem jeweiligen Technologiefeld zugehörigen Unternehmen abbilden.

4.4 Netzwerke

Innovationsprozesse basieren auf starken Rückkopplungsprozessen und erfordern somit intensive Verflechtungsbeziehungen zwischen unterschiedlichen Akteuren. Erste Hinweise auf Kooperationsbeziehungen bietet die Innovationserhebung zur Erstellung des Mannheimer Innovationspanels. Im Rahmen dieser Erhebung werden Kooperationen einzelner Unternehmen in den Bereichen Forschung und Entwicklung sowie Innovationskooperationen erhoben. Durch diesen Indikator wird ein Überblick vermittelt, inwieweit Unternehmen an FuE- bzw. Innovationskooperationen beteiligt waren und aus welchen Bereichen (Kunden, Wettbewerber, Universitäten, Forschungseinrichtungen u. a.) die Kooperationspartner kamen.

Ein umfassenderes Instrument zur Identifikation von Netzwerkstrukturen innerhalb eines Technologiebereichs bietet die Netzwerkanalyse. Im Rahmen dieser Analyse werden die Kooperationsbeziehungen zwischen ausgewählten Akteuren erfasst und bewertet. Darüber hinaus ermöglicht die Netzwerkanalyse die Ermittlung statistischer Maße zur Vernetzungsdichte und Netzwerkkoäquasion sowie die Identifikation von zentralen Akteuren. Somit können Aussagen über die Qualität und Quantität der Kooperationsnetze und Verflechtungen getroffen werden, die im Nachgang der Analyse für Handlungsempfehlungen hin zu einer verbesserten Innovationspolitik führen.

Die Förderung von Unternehmensnetzwerken und anderen Netzwerken, beispielsweise Kooperationsverflechtungen zwischen Wissenschaft und Wirtschaft, erweist sich in vielen Fällen als effektives Instrument der Wirtschaftsförderung. Um einen Überblick über die innovationsorientierte Netzwerkstruktur der Wirtschaft zu liefern, empfiehlt es sich, die Methode der Netzwerkanalyse als eine weitere Säule zur vollständigen Abbildung des Innovationssystems mit in die Erhebungen einzubeziehen.
5 Literaturverzeichnis

Potenzialanalyse wissenschaftlich-technischer Innovationsfelder

Rainer Voßkamp, Mirjam Reiß, Jan Widuch, Dieter Dohmen

1 Einführung

Innovationen sind eine „wesentliche Triebfeder“ für die wirtschaftliche Entwicklung (Schumpeter 1911). Sie führen zu einzel- wie gesamtwirtschaftlichen Effekten. Durch Innovationen ergeben sich z. B. in aller Regel positive Effekte für das (quantitative bzw. qualitative) Wachstum, wenngleich einzelne Unternehmen durch Innovationen ihrer Wettbewerber verlieren können. Ferner können mit Innovationen weitere Folgen verbunden sein, die sich z. B. (positiv oder auch negativ) auf die Gesundheit, die Umweltqualität oder die Lebensqualität auswirken.

Aufgrund dieser Effekte von Innovationen ist es von großem Interesse, frühzeitig deren Wirkungen abzuschätzen, um gegebenenfalls durch politische Maßnahmen Innovationsprozesse unterstützen oder steuern zu können. Dies gilt vor allem dann, wenn es sich nicht um eine einzelne Innovation handelt, sondern um Innovationsfelder, die sich im Entwicklungsstadium befinden. So sind heute zentrale Innovationsfelder, wie z. B. die Informations- und Kommunikationstechnologien, die Biotechnologie oder die Nanotechnologie, jeweils durch eine große Zahl von neuen Produkten und Prozessen gekennzeichnet, die stetig wachsende Beiträge zum Bruttoinlandsprodukt leisten.

Somit sind zwei Leitfragen entscheidend. Die erste bezieht sich auf die Identifikation von neuen Innovationsfeldern: Anhand welcher Indikatoren kann man frühzeitig erkennen, ob wissenschaftlich-technische Entwicklungen zu einem neuen Innovationsfeld führen können? Die zweite betrifft das Potenzial von neuen Innovationsfeldern: Was sind die Potenziale von technisch-wissenschaftlichen Innovationsfeldern?

2 Vgl. hierzu z. B. die VDI-Richtlinie 3780 (VDI 2000).
2 Bestandsaufnahme und Entwicklung der Methodik

2.1 Grundlagen

Theoretischer Hintergrund

Methoden der Daten- und Potenzialanalyse

2.2 Eckpunkte des Indikatorensystems

Klassifikation der Indikatoren

Die theoretischen Grundlagen motivieren fünf Gruppen von Indikatoren, die in Unterabschnitt 2.3 im Einzelnen dargestellt werden: A - Technische Indikatoren, B - Indikatoren zur Identifikation, C - Indikatoren zur Abschätzung einzelwirtschaftlicher Potenziale, D - Indikatoren zur Abschätzung gesamtwirtschaftlicher Potenziale und E - Indikatoren zur Abschätzung sonstiger Potenziale.
Auswahl der Indikatoren

Datenverfügbarkeit und Skalierung

Operationalisierung

Elementares und erweitertes Indikatorensystem

2.3 Indikatoren des Indikatorensystems

Technische Indikatoren (A)

Bei Technischen Indikatoren handelt es sich um Indikatoren, die die technologischen Charakteristika des Innovationsfeldes und die hieraus resultierenden Marktconstellationen beschreiben. Sie geben z. B. Aufschluss darüber, ob es sich um ein durch neue Produkte oder neue Prozesse gekennzeichnetes Innovationsfeld handelt und wie viele Märkte durch die Entwicklung des neuen Innovationsfeldes betroffen sind oder ob durch diese Substitutionsprozesse ausgelöst werden.

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Produktinnovation</td>
<td>Handelt es sich um eine Produktinnovation?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.2</td>
<td>Prozessinnovation</td>
<td>Handelt es sich um eine Prozessinnovation?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.3</td>
<td>Verwendungszwecke</td>
<td>Kann das neue Produkt bzw. der neue Prozess in unterschiedlichen Kontexten Verwendung finden?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.4</td>
<td>Neuheitsgrad</td>
<td>Wie hoch ist der Neuheitsgrad?</td>
<td>o</td>
<td>sehr hoch/.../sehr gering</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.5</td>
<td>Konsumgut</td>
<td>Handelt es sich um ein Konsumgut?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.6</td>
<td>Investitionsgut</td>
<td>Handelt es sich um ein Investitionsgut?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.7</td>
<td>Vorleistungsgut</td>
<td>Handelt es sich um ein Vorleistungsgut?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.8</td>
<td>Bedeutung der privaten Haushalte als Nachfrager</td>
<td>Sind private Haushalte potenzielle Nachfrager?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.9</td>
<td>Bedeutung der öffentlichen Haushalte als Nachfrager</td>
<td>Sind öffentliche Haushalte potenzielle Nachfrager?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.10</td>
<td>Bedeutung der Unternehmen als Nachfrager</td>
<td>Sind Unternehmen potenzielle Nachfrager?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.11</td>
<td>Bedeutung des Auslandes als Nachfrager</td>
<td>Ist das Ausland ein potenzieller Nachfrager?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.12</td>
<td>Komplementärgüter</td>
<td>Sind wesentliche Komplementärgüter von Bedeutung?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.13</td>
<td>Substitutionsgüter</td>
<td>Sind Substitutionsgüter vorhanden?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>A.14</td>
<td>Netzwerkeffekte</td>
<td>Sind seitens der Nachfrageseite Netzwerkeffekte relevant?</td>
<td>b</td>
<td>ja/nein</td>
<td>SEK</td>
<td>elementar</td>
</tr>
</tbody>
</table>

Erläuterungen: b = binär o = ordinal SEK = Sekundärquellen

Quelle: Darstellung des FiBS

Tabelle 1:
Technische Indikatoren (A)
Wenn das neue Produkt in mehreren Kontexten Verwendung finden kann (Indikator A.3), so ist insbesondere bei den Potenzialindikatoren darauf zu achten, dass alle potenziellen Verwendungsbereiche berücksichtigt werden. Der Neuheitsgrad (A.4) gibt mittelbar Aufschluss darüber, ob ein vorhandenes Produkt verbessert wurde und sich somit auf einem bestehenden Markt Veränderungen ergeben oder ob ein gänzlich neuer Markt entstehen könnte.

Die Informationen für diese Indikatoren lassen sich in aller Regel aus Sekundärquellen bestimmen. Deshalb werden alle Indikatoren dieses Bereichs dem elementaren Indikatorensystem zugeordnet.

Indikatoren zur Identifikation (B)

Die Indikatoren, die zur Identifikation von neuen Innovationsfeldern geeignet sind, werden nach den beteiligten Akteur/innen Bezeichnung operationalisiert ausgewiesen.

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. 1. 1</td>
<td>B.1.1</td>
<td>Publikationen</td>
<td>Anzahl der Publikationen</td>
<td>m</td>
<td>BIB</td>
<td>elementar</td>
<td></td>
</tr>
<tr>
<td>B. 1. 2</td>
<td>B.1.2</td>
<td>Publikationen</td>
<td>Anzahl der Zitate</td>
<td>m</td>
<td>BIB</td>
<td>elementar</td>
<td></td>
</tr>
<tr>
<td>B. 1. 3</td>
<td>B.1.3</td>
<td>Patente</td>
<td>Anzahl der Patente</td>
<td>m</td>
<td>PUB</td>
<td>elementar</td>
<td></td>
</tr>
<tr>
<td>B. 1. 4</td>
<td>B.1.4</td>
<td>FuE-Ausgaben im Wissenschaftsbereich</td>
<td>FuE-Ausgaben im Wissenschaftsbereich</td>
<td>m</td>
<td>STA erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 1. 5</td>
<td>B.1.5</td>
<td>FuE-Beschäftigte/Wissenschaftler</td>
<td>FuE-Beschäftigte/Wissenschaftler</td>
<td>m</td>
<td>STA erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 1. 6</td>
<td>B.1.6</td>
<td>Institute</td>
<td>Anzahl der Einheiten</td>
<td>m</td>
<td>SEK</td>
<td>elementar</td>
<td></td>
</tr>
<tr>
<td>B. 1. 7</td>
<td>B.1.7</td>
<td>Studienangebote</td>
<td>Anzahl der Studiengänge</td>
<td>m</td>
<td>SEK</td>
<td>elementar</td>
<td></td>
</tr>
<tr>
<td>B. 1. 8</td>
<td>B.1.8</td>
<td>Studierende</td>
<td>Anzahl der Studierenden</td>
<td>m</td>
<td>STA erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 1. 9</td>
<td>B.1.9</td>
<td>Weiterbildungsangebote</td>
<td>Wie groß ist das Angebot an Weiterbildungsangeboten?</td>
<td>o</td>
<td>sehr hoch/.../sehr gering</td>
<td>SEK</td>
<td>erweitert</td>
</tr>
<tr>
<td>B. 1. 10</td>
<td>B.1.10</td>
<td>Unternehmensgründungen - Spinofts</td>
<td>Anzahl der Neugründungen</td>
<td>m</td>
<td>STA</td>
<td>erweitert</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen:
- m = metrisch
- o = ordinal
- BIB = Bibliographische Datenbanken
- PAT = Patentdatenbanken
- SEK = Sekundärquellen
- STA = Statistische Daten

Quelle: Darstellung des FIBS

Tabelle 2: Indikatoren zur Identifikation – Wissenschaft (B.1)
innen, d. h. Wissenschaft, Unternehmen, Financiers und Staat, gruppiert. Außerdem sind Kooperationen zu berücksichtigen.

Wissenschaft (B.1)

Hochschulen und andere Forschungseinrichtungen sind zentrale Akteur/innen im Innovationssystem. Sie sind maßgeblich an der Schaffung von neuem Wissen, das eine Voraussetzung für Inventionen und Innovationen ist, beteiligt.

Die ersten beiden der insgesamt 10 Indikatoren (B.1.1 und B.1.2) betrachten den Publikationsoutput der wissenschaftlichen Einrichtungen, da damit neues Wissen verbunden ist. Auf der Basis von Publikationsdatenbanken (z. B. Science Citation Index) kann für ein beliebiges Innovationsfeld ermittelt werden, wie viele Publikationen, die einen bestimmten Standard erfüllen, erschienen und wie häufig sie zitiert worden sind. Zu beachten ist dabei, dass jede Datenbank nur eine spezifische Auswahl von Publikationen erfasst. Diese beiden Indikatoren sind, wie der Indikator B.1.3, der die Zahl der Patente aus dem wissenschaftlichen Bereich bestimmt, dem elementaren Indikatoren- system zuzuordnen, da die entsprechenden Datenquellen zur Verfügung stehen.

Weitere wichtige Indikatoren für den Bereich der Wissenschaft sind die FuE-Ausgaben und die FuE-Beschäftigten (B.1.4 und B.1.5). Die Daten für diese beiden Indikatoren liegen allerdings in aller Regel nur für „große“ Innovationsfelder wie den Bereich der Chemischen Industrie vor, weil in aller Regel nur auf die Daten des Stifterverbandes oder des Mannheimer Innovationspanels zurückgegriffen werden kann. Deshalb sind diese beiden Indikatoren dem erweitertem System zugeordnet. Der Indikator B.1.6 gibt die Zahl der Institute etc. an, an denen in dem betreffenden Innovationsfeld forscht wird. Wird ein neues Institut oder ein neuer Lehrstuhl gegründet, so ist zu vermuten, dass dies vor dem Hintergrund neuer wissenschaftlicher Entwicklungen geschieht. Sekundärquellen und insbesondere Internet-Recherchen erlauben prinzipiell die Bestimmung der Zahl der entsprechenden Einheiten, wobei der Rechercheaufwand u. U. erheblich ist.

Ein weiteres Indiz für die Entwicklung neuer Innovationsfelder ist die Einrichtung neuer Studienangebote (B.1.7). Dementsprechend gibt die Zahl der relevanten Studiengänge im Zeitablauf einen Hinweis auf die Entwicklung von Innovationsfeldern. Da die Informationen hierzu prinzipiell im Internet verfügbar sind,
handelt es sich auch um einen elementaren Indikator. Ein damit verbundener Indikator ist die Zahl der Studierenden in den entsprechenden Studiengängen (B.1.8). Studierendenzahlen werden aber in aller Regel nicht in der notwendigen Differenziertheit ausgewiesen, so dass dieser Indikator dem erweiterten System zuzuordnen ist.

Der Indikator B.1.10 bezieht sich auf Spinoffs, also Neugründungen von Unternehmen in dem entsprechenden Innovationsfeld. Durch fortlaufende Befragungen wie im Rahmen des Mannheimer Gründungspanels können Aussagen zum Gründungsgeschehen getroffen werden. Allerdings stellt sich hier das Problem, dass „kleine“ Innovationsfelder nur bedingt erfasst werden können.

Unternehmen (B.2)
Innovationen werden (in aller Regel) von Unternehmen durchgesetzt; sie spielen daher eine zentrale Rolle. Neue Produkte oder Prozesse entstehen oft aus angewandter Forschung, die überwiegend in den Unternehmen stattfindet, sowie aus Grundlagenforschung, die im Wesentlichen in der Wissenschaft erfolgt, deren Ergebnisse aber in die angewandte Forschung eingehen.

Die Entwicklung von Innovationsfeldern lässt sich deshalb bei den Unternehmen in ähnlicher Weise wie bei den wissenschaftlichen Einrichtungen ablesen. Auch hier sind die Indikatoren Publikationen (B.2.1 und B.2.2), Patente (B.2.3), FuE-Ausgaben (B.2.4), FuE-Beschäftigte (B.2.5) und Unternehmensgründungen (B.2.7) relevant. Hinsichtlich der Datenverfügbarkeit und der Zuordnung zu den beiden Indikatoren systemen gelten die Aussagen zum vorherigen Bereich Wissenschaft (B.1) analog; sie sollen daher hier nicht wiedeholt werden. Hinzuweisen ist ergänzend lediglich darauf, dass für die Bestimmung von FuE-Ausgaben und FuE-Beschäftigten sowie für die Zahl der Unternehmensneugründungen in aller Regel neue Datenquellen erschlossen werden müssen. Außerdem wird der Indikator Produktischulungen aufgenommen, der in der Literatur verschiedentlich als Indikator neuer Innovationsfelder betrachtet wird. Grundsätzlich sind hier durch Sekundärquellen Daten verfügbar, wobei auch hier der Rechercheaufwand erheblich sein dürfte.

Financiers (B.3)
Da Forschungs- und Innovationsprozesse vielfach nicht aus internen Quellen finanziert werden können, sind externe Finanzierungsquellen zu erschließen.

Deshalb sind für die Entwicklung von neuen Innovationsfeldern auch Finanzorganisationen wie Banken sowie Venture Capital- und Private Equity-Unternehmen (VC-bzw. PE-Unternehmen) von besonderer Bedeutung, da sie die Finanzierung von FuE und die Markteinführung ermöglichen. Zunehmende Finanzierungsaktivitäten deuten auf eine positive Entwicklung eines neuen Innovationsfeldes hin. Wichtige Indikatoren, die diese Entwicklungen abbilden können, sind das Volumen von VC-Kontrakten und das Investitionsvolumen von PE-Unternehmen (B.3.1 und B.3.2). Daten für diese Indikatoren liegen in aller Regel nicht vor. Für die Datengewinnung sind üblicherweise primärstatische Befragungen oder auch Befragungen von Expert/innen durchzuführen, so dass diese Indikatoren dem erweiterten System zuzuordnen sind.

Gerade in neuen Innovationsfeldern ist die aktienbasierte Finanzierung bedeutsam. Die Entwicklung der Aktienkurse (B.3.3) und die Zahl bzw. das Emissionsvolumen der Börsengänge (B.3.4 bzw. B.3.5) sind weitere Indikatoren, allerdings produzieren Unternehmen in der Regel verschiedene Produkte, so dass u. U. eine Zuordnung zu einem speziellen Innovationsfeld nicht unproblematisch ist. Da in aller Regel die relevanten Unternehmen aus dem zu untersuchenden Innovationsfeld nicht bekannt sind, sind auch diese Indikatoren dem erweiterten System zuzuordnen.

Staat (B.4)
Tabelle 4: Indikatoren zur Identifikation – Financiers (B.3)

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3.1</td>
<td>VC-Kontrakte</td>
<td>Volumen der Kontrakte</td>
<td>m</td>
<td></td>
<td>STA</td>
<td>erweitert</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Private Equity Investitionen</td>
<td>Investitionsvolumen</td>
<td>m</td>
<td></td>
<td>STA</td>
<td>erweitert</td>
</tr>
<tr>
<td>B.3.3</td>
<td>Aktienkursentwicklung</td>
<td>Aktienkursindizes</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>erweitert</td>
</tr>
<tr>
<td>B.3.4</td>
<td>Aktienemissionen</td>
<td>Anzahl der Neuemissionen</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>erweitert</td>
</tr>
<tr>
<td>B.3.5</td>
<td>Aktienemissionen</td>
<td>Volumen der Neuemissionen</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>erweitert</td>
</tr>
</tbody>
</table>

Erläuterungen:
- Quelle: Darstellung des FiBS
- m=metrisch
- SEK=Sekundärquellen
- STA=Statistische Daten

Tabelle 5: Indikatoren zur Identifikation – Staat (B.4)

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.4.1</td>
<td>Staatliche Förderprogramme Grundlagenforschung</td>
<td>Volumen der Förderprogramme</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>B.4.2</td>
<td>Staatliche Förderprogramme Angewandte Forschung</td>
<td>Volumen der Förderprogramme</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>B.4.3</td>
<td>Staatliche Förderprogramme Unternehmensgründungen</td>
<td>Volumen der Förderprogramme</td>
<td>m</td>
<td></td>
<td>SEK</td>
<td>elementar</td>
</tr>
<tr>
<td>B.4.4</td>
<td>Geförderte Projekte der Wissenschaft</td>
<td>Zahl der Projekte</td>
<td>m</td>
<td></td>
<td>PRO</td>
<td>elementar</td>
</tr>
<tr>
<td>B.4.5</td>
<td>Geförderte Projekte der Wirtschaft</td>
<td>Zahl der Projekte</td>
<td>m</td>
<td></td>
<td>PRO</td>
<td>elementar</td>
</tr>
</tbody>
</table>

Erläuterungen:
- Quelle: Darstellung des FiBS
- m=metrisch
- SEK=Sekundärquellen
- STA=Statistische Daten

Vernetzung der Akteur/innen (B.5)

Dem Ansatz des Innovationssystems folgend ist die Vernetzung zwischen den Akteur/innen, die an den Innovationsprozessen beteiligt sind, von großer Bedeutung. Entsprechende Indikatoren sind Ko-Publikationen von Autor/innen aus Wissenschaft und Wirtschaft (B.5.1) oder aus dem Ausland (B.5.2) ebenso wie Ko-Patente (B.5.3 und B.5.4) oder Kooperationsprojekte (B.5.5 und B.5.6).

Da sich die Kooperation zwischen Akteur/innen nicht in Ko-Publikationen, Ko-Patenten und Kooperationsprojekten zeigt muss, sind allgemeinere Indikatoren, wie etwa zur Kooperationsintensität von Interesse (B.5.7 und B.5.8). Andere Kooperationsformen sind (wissenschaftliche und marktnahe) Konferenzen (B.5.9 und B.5.10) und die Gründung von Verbänden (B.5.11 und B.5.12). Schließlich ist auch der Grad der Interdisziplinarität (B.5.13) ein Maß für Vernetzung.

Tabelle 6: Indikatoren zur Identifikation – Vernetzung (B.5)

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.5.1</td>
<td>Ko-Publikationen Wissenschaft Unternehmen</td>
<td>Anzahl der Publikationen</td>
<td>m</td>
<td></td>
<td>BIB elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.2</td>
<td>Ko-Publikationen mit ausländischen Partnern</td>
<td>Anzahl der Publikationen</td>
<td>m</td>
<td></td>
<td>BIB elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.3</td>
<td>Ko-Patente Wissenschaft Unternehmen</td>
<td>Anzahl der Patente</td>
<td>m</td>
<td></td>
<td>PAT elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.4</td>
<td>Ko-Patente mit ausländischen Partnern</td>
<td>Anzahl der Patente</td>
<td>m</td>
<td></td>
<td>PAT elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.5</td>
<td>Kooperationsprojekte zwischen Wissenschaft und Unternehmen</td>
<td>Anzahl Projekte</td>
<td>m</td>
<td></td>
<td>PRO elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.6</td>
<td>Kooperationsprojekte mit ausländischen Partnern</td>
<td>Anzahl Projekte</td>
<td>m</td>
<td></td>
<td>PRO elementar</td>
<td></td>
</tr>
<tr>
<td>B.5.7</td>
<td>Kooperationsintensität</td>
<td>Wie hoch ist der Kooperationsintensität mit dem Ausland?</td>
<td>o</td>
<td>sehr hoch/.../sehr gering</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.8</td>
<td>Kooperationsintensität</td>
<td>Wie hoch ist der Kooperationsintensität zwischen Wissenschaft und Wirtschaft?</td>
<td>o</td>
<td>sehr hoch/.../sehr gering</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.9</td>
<td>Wissenschaftliche Konferenzen</td>
<td>Werden wesentliche wissenschaftliche Konferenzen durchgeführt?</td>
<td>b</td>
<td>ja/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.10</td>
<td>Marktnahe Konferenzen</td>
<td>Werden wesentliche marktnahe Konferenzen durchgeführt?</td>
<td>b</td>
<td>ja/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.11</td>
<td>Wissenschaftliche Verbände</td>
<td>Existiert ein wissenschaftlicher Verband?</td>
<td>b</td>
<td>ja/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.12</td>
<td>Marktnahe Verbände</td>
<td>Existiert ein marktnaher Verband?</td>
<td>b</td>
<td>ja/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>B.5.13</td>
<td>Interdisziplinarität</td>
<td>Wie hoch ist der Grad der Interdisziplinarität?</td>
<td>o</td>
<td>sehr hoch/.../sehr gering</td>
<td>EXP erweitert</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen:
b=binär
o=ordinal
m=metrisch
BIB=Bibliographische Datenbanken,
EXP=Expert/innen
PAT=Patentdatenbanken
PRO=Projektdatenbanken
Quelle: Darstellung des FiBS
Indikatoren zur Abschätzung einzelwirtschaftlicher Potenziale (C)

Die Indikatoren zur Abschätzung der einzelwirtschaftlichen Potenziale (C) werden nach den Akteur/innen gruppiert, die sie beeinflussen.

Durch die Innovator/innen beeinflusste Indikatoren (C.1)

Maßgeblichen Einfluss auf die Potenziale von neuen Innovationsfeldern haben die innovativen Unternehmen durch ihre unternehmerischen Entscheidungen, wie etwa Markteinführungs-, Preis- und Qualitätsentscheidungen (Wilkinson 2005).

Ob sich die Markteinführung eines neuen Produktes aus betriebswirtschaftlicher Sicht lohnt, hängt von zahlreichen strategischen Variablen der Unternehmen ab. So kann die Markteinführung verzögert werden, wenn Vorläuferprodukte noch Deckungsbeiträge liefern (C.1.1). Ferner kann auch strategisches Patentieren dazu führen, dass die Entwicklung neuer Innovationsfelder gehemmt wird (C.1.2). Dies ist dann der Fall, wenn Unternehmen Forschung und Entwicklung betreiben, um Patente zu erlangen, die aber nicht zur Absicherung eigener Entwicklungen dienen, sondern Entwicklungsmöglichkeiten von Konkurrenzunternehmen beschränken (vgl. z.B. Léger 2007).

Die Potenziale von neuen Innovationsfeldern hängen aber maßgeblich davon ab, zu welchem Preis (C.1.3) und zu welcher Qualität (C.1.4), insbesondere im Vergleich zu anderen Produkten, die neuen Produkte angeboten werden können. Entscheidend kann aber auch der erforderliche Werbeaufwand sein (C.1.5) oder wie hoch der Aufwand der Distribution ist (C.1.6).

Die Daten für die empirische Bestimmung der Indikatoren sind in aller Regel nur durch Expert/innengespräche zu gewinnen, so dass diese Indikatoren dem erweiterten Indikatorensystem zuzuordnen sind.

Durch andere Unternehmen beeinflusste Indikatoren (C.2)

Während innovative Unternehmen die im vorherigen Unterabschnitt genannten Indikatoren beeinflussen können, sind die in Tabelle 8 aufgeführten Indikatoren, die durch andere Unternehmen beeinflusst werden, durch sie nicht kontrollierbar.

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1.1</td>
<td>Markteinführungshemmnisse durch Produktlebenszyklusstrategien</td>
<td>Es ist zu erwarten, dass die Markteinführung aufgrund der Optimierung von Produktlebenszyklen verzögert wird.</td>
<td>o</td>
<td>Zustimmung: ja/…/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.1.2</td>
<td>Markteinführungshemmnisse durch strategisches Patentieren</td>
<td>Es ist zu erwarten, dass die Markteinführung aufgrund betrieblicher Patentstrategien verzögert wird.</td>
<td>o</td>
<td>Zustimmung: ja/…/nein</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.1.3</td>
<td>Preis</td>
<td>Der Preis des neuen Produktes ist im Vergleich zu anderen Produkten …</td>
<td>o</td>
<td>sehr hoch/…/sehr niedrig</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.1.4</td>
<td>Qualität</td>
<td>Die Qualität des neuen Produktes ist im Vergleich zu anderen Produkten …</td>
<td>o</td>
<td>sehr hoch/…/sehr niedrig</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.1.5</td>
<td>Werbeaufwand</td>
<td>Der zu treibende Werbeaufwand für das neue Produkt ist im Vergleich zu anderen Produkten …</td>
<td>o</td>
<td>sehr hoch/…/sehr niedrig</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.1.6</td>
<td>Distribution</td>
<td>Die Kosten der Distribution des neuen Produktes sind im Vergleich zu anderen Produkten …</td>
<td>o</td>
<td>sehr hoch/…/sehr niedrig</td>
<td>EXP erweitert</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen: Quelle: Darstellung des FiBS

Tabelle 7:
Indikatoren zur Abschätzung einzelwirtschaftlicher Potenziale – Durch die Innovator/innen beeinflusste Indikatoren (C.1)
Die Potenziale von neuen Innovationsfeldern können zunächst dadurch beschränkt sein, dass bestimmte Ressourcen nicht verfügbar sind, weil andere Unternehmen diese an sich gebunden haben (C.2.1). Der Ressourcenbegriff ist dabei sehr weit zu fassen und kann auch unzureichendes Humankapital, Finanzkapital oder auch physische Produktionsfaktoren einbeziehen. Auch Schutzrechte, die von anderen Unternehmen gehalten werden, können die Entwicklung von neuen Innovationsfeldern behindern.

Zudem stellt sich die Frage, wie Konkurrenzunternehmen auf die Markteinführung reagieren. So können Potenziale durch Preisreaktionen der Anbieter von Substitutionsgütern reduziert werden (C.2.2). Darüber hinaus sind weitere Marktreaktionen denkbar, die den Markteintritt be- oder gar verhindern (C.2.4). Wesentlich für die Entwicklung von neuen Innovationsfeldern ist auch, wie sich die Preise für Komplementärgüter verändern (C.2.3). Die Potenziale hängen schließlich auch davon ab, inwieweit der relevante Markt durch (angebotsetzige) Marktkonzentration (C.2.5) und somit durch Marktmacht gekennzeichnet ist. Je höher die Marktmacht eines innovativen Unternehmens ist, desto höhere Preise kann es in der Regel durchsetzen, was allerdings typischerweise mit einer gerin-geren Nachfrage verbunden ist.

Durch Nachfrager/innen beeinflusste Indikatoren (C.3)

Die Potenziale von neuen Innovationsfeldern hängen maßgeblich davon ab, in welchem Umfang Nachfrager/innen bereit oder in der Lage sind, das neue Produkt nachzufragen (Wilkinson 2005).

Darüber hinaus kann in vielen Fällen auch der rechtliche Rahmen (C.3.3) bedeutsam sein, z.B. wenn neue Produkte aufgrund von rechtlichen Regelungen (z.B. Umweltschutzregelungen oder Jugendschutzbestimmungen) nur von einer bestimmten Gruppe nachgefragt werden dürfen. Wenn der Staat im Rahmen seiner Beschaffungspolitik das neue Produkt nachfragen könnte, so erhöht dies die Potenziale (C.3.4).
In ähnlicher Weise können demographische (C.3.5), klimatische (C.3.6), saisonale (C.3.7), makroökonomische (C.3.8), institutionelle (C.3.9) und technologische Faktoren (C.3.10) die Potenziale wesentlich beeinflussen. Darüber hinaus spielt es eine Rolle, ob das neue Produkt ein Substitutions- (C.3.11) oder ein Komplementärgut (C.3.12) ist.

Wie bereits bei den anderen Indikatoren im Bereich C können Daten für diese Indikatoren in aller Regel nur durch Einschätzung von Expert/innen gewonnen werden.

Tabelle 9:
Indikatoren zur Abschätzung einzelwirtschaftlicher Potenziale – Durch Nachfrager/innen beeinflusste Indikatoren (C.3)

<table>
<thead>
<tr>
<th>Bez. Indikatoren</th>
<th>Operationalisierung</th>
<th>Skala</th>
<th>Ausprägungen</th>
<th>Datenverfügbarkeit</th>
<th>Zuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3.1 Einkommen der Haushalte</td>
<td>Höhe des verfügbaren Einkommens der entsprechenden Kategorie</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.2 Präferenzen/Geschmack/Risiko</td>
<td>Entspricht das Produkt dem Geschmack der Konsumenten?</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.3 Rechtlicher Rahmen</td>
<td>Spielt der rechtliche Rahmen eine Rolle? Gibt es rechtliche Hemmnisse?</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.4 Staatlicher Einfluss Nachfrage</td>
<td>Ist der Staat maßgeblicher Nachfrager?</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.5 Demographische Faktoren</td>
<td>Ist die demografische Entwicklung für die Marktentwicklung förderlich?</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.6 Klimatische Faktoren</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.7 Saisonale Faktoren</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.8 Makroökonomische Faktoren</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.9 Institutionelle Faktoren</td>
<td>Rolle des Einflusses positiv/negativ, gibt es zulassungsbedingte Hemmnisse</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.10 Technologische Faktoren</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.11 Substitution</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>C.3.12 Komplementarität</td>
<td>Rolle des Einflusses positiv/ negativ</td>
<td>o</td>
<td>geeignete Ordinalska</td>
<td>EXP erweitert</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen: Quelle: Darstellung des FiBS

Tabelle 9
Indikatoren zur Abschätzung einzelwirtschaftlicher Potenziale – Durch Nachfrager/innen beeinflusste Indikatoren (C.3)

Indikatoren zur Abschätzung gesamtwirtschaftlicher Potenziale (D)

Diese Gruppe von Indikatoren betrachtet die wirtschaftlichen Potenziale aller Unternehmen, die durch die Entwicklung des neuen Innovationsfeldes betroffen sind. Da die einzelwirtschaftlichen Indikatoren im Vordergrund der Analyse stehen, sollen für die gesamtwirtschaftlichen Potenziale nur einige wenige Indikatoren benannt werden. Die gesamtwirtschaftlichen Potenziale ergeben sich durch die Zusammenfassung der Wir-
Tabelle 10:
Indikatoren zur Abschätzung gesamtwirtschaftlicher Potenziale (D)

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Marktreaktionen Konkurrenten</td>
<td>Umsatz- und Absatzeinbußen bei Konkurrenten</td>
<td>m</td>
<td>EXP erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>Marktreaktionen in anderen WZ</td>
<td>Umsatz- und Absatzeinbußen bei Konkurrenten</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>Wachstum</td>
<td>Veränderung Wachstumsrate BIP</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>Beschäftigung</td>
<td>Veränderung Erwerbstätige</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td>Preiseinheitlichkeit</td>
<td>Veränderung Inflationsrate</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Wettbewerbsfähigkeit</td>
<td>Veränderung Außenhandel</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>Staatsfinanzen</td>
<td>Veränderung Steueraufkommen, Sozialausgaben, Staatsdefizit</td>
<td>m</td>
<td>MOD erweitert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen:

Quelle: Darstellung des FiBS
m = metrisch EXP=Expert/innen MOD=Modellrechnungen

Tabelle 11:
Indikatoren zur Abschätzung sonstiger Potenziale (E)

<table>
<thead>
<tr>
<th>Bez. (1)</th>
<th>Indikatoren (2)</th>
<th>Operationalisierung (3)</th>
<th>Skala (4)</th>
<th>Ausprägungen (5)</th>
<th>Datenverfügbarkeit (6)</th>
<th>Zuordnung (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1</td>
<td>Funktionsfähigkeit</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.2</td>
<td>Sicherheit</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.3</td>
<td>Gesundheit</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.4</td>
<td>Umwelt</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.5</td>
<td>Persönlichkeitsentfaltung</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.6</td>
<td>Gesellschaftsqualität</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
<tr>
<td>E.7</td>
<td>Weitere Potenziale</td>
<td>div.</td>
<td>o</td>
<td>geeignete Ordinalskala</td>
<td>EXP erweitert</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterungen:

Quelle: Darstellung des FiBS
o = ordinal EXP=Expert/innen
kungen bei den innovativen Unternehmen, bei unmittelbaren Konkurrenten sowie bei Unternehmen in anderen Wirtschaftszweigen (Voßkamp 1996).

Indikatoren zur Abschätzung sonstiger Potenziale (E)

Zwischenfazit

In diesem Abschnitt wurden die Indikatoren des elementaren und erweiterten Systems zusammengestellt. Vor dem Hintergrund des Wissens über Innovationsprozesse, das sich vor allem aus dem Ansatz der Innovationssystemen und von Ansätzen des Strategischen, Innovations- und Technologiemanagements speist, war zu erwarten, dass eine relativ große Zahl von Indikatoren betrachtet werden muss, um eine möglichst gute Basis zur Identifikation und Potenzialabschätzung von neuen Innovationsfeldern zu erhalten.

Sämtliche Indikatoren sind durch die diskutierten Grundlagen wohl begründet. Alle Operationalisierungen sind so gewählt, dass prinzipiell eine empirische Bestimmung für ein beliebiges Innovationsfeld möglich ist. Allerdings zeigt sich auch, dass nur für einen Teil der Indikatoren Datenquellen vorhanden sind, die für die Anwendung eines beliebigen Innovationsfeldes geeignet sind. Folglich umfasst das elementare Indikatorensystem 33 Indikatoren, die insbesondere die 14 technischen Indikatoren (Indikatorenbereich A) und 19 Indikatoren zur Identifikation (Indikatorenbereich B) abdecken. Damit sind knapp die Hälfte der Indikatoren, die zur Identifikation von neuen Innovationsfeldern nützlich sind, im elementaren System angesiedelt. Für die Indikatoren zur Potenzialabschätzung sind in der Regel nur durch Einschätzungen von Expert/innen und Modellrechnungen bestimmmbar.

3 Anwendung der Methodik für ausgewählte Bildgebende Verfahren in der Medizintechnik

3.1 Grundlagen

Das im vorherigen Abschnitt entwickelte Indikatorensystem soll nun exemplarisch auf den Bereich der Bildgebenden Verfahren in der Medizintechnik angewendet werden. Ex post sollen die ersten Generationen der Computertomographen untersucht werden, ex ante das Bildgebende Verfahren PET/CT, bei dem die Positronen-Emissions-Tomographie mit der Computertomographie kombiniert wird.

Primäres Ziel ist es, die Anwendbarkeit des Indikatorensystems zu zeigen. Es soll dargestellt werden, wie Datenquellen konkret erschlossen, die diskutierten Methoden der Datenanalyse angewandt und letztlich die Indikatoren empirisch bestimmt werden können. Es geht dabei nicht darum, eine abschließende Studie für die beiden ausgewählten Innovationsfelder durchzuführen.

Beim Innovationsfeld PET/CT werden CT-Aufnahmen mit PET-Aufnahmen, die gleichzeitig erstellt werden, kombiniert. Im Gegensatz zu Verfahren, die auf Röntgen-Strahlung basieren, werden bei der Positronen-Emissions-Tomographie den Körper Radioisotope zugeführt, deren Zerfallsprozesse aufgenommen werden. PETs wurden erstmalig in den 1990er Jahren angewendet. Ein PET/CT kam erstmals im Jahr 2002 zum Einsatz (Freundenberg et al. 2002). Die wirtschaftliche Nutzung ist zum heutigen Zeitpunkt noch sehr gering, die jüngste Entwicklung in diesem Innovationsfeld allerdings sehr dynamisch. Deshalb ist von Interesse, ob dieses Innovationsfeld in Zukunft die Bedeutung erlangen kann, die heute z. B. CT aufweist.
Somit werden für diesen Arbeitsschritt zwei Innovationsfelder innerhalb eines größeren Innovationsfeldes gewählt. Dies hat den Vorteil, dass wesentliche technologische und ökonomische Rahmenbedingungen sehr ähnlich sind.

3.2 Wirtschaftliche Bedeutung von Bildgebenden Verfahren

3.3 Anwendung der Methodik

Im Vordergrund der nachfolgenden Betrachtungen stehen die Indikatoren des elementaren Systems, wozu insbesondere die technischen Indikatoren (A) und der überwiegende Teil der Indikatoren zur Identifikation (B) zählen. Die technischen Indikatoren werden komplett bestimmt, während die Indikatoren zur Identifikation zwar prinzipiell mit den vorhandenen Datenquellen bestimmar sind. Aufgrund des sehr hohen Aufwertungsaufwandes werden nur ausgewählte Publikations-, Patent- und Projektindikatoren ermittelt, die allerdings zentrale Indikatoren zur Identifikation darstellen.

Es soll dabei gezeigt werden, wie die entsprechenden Indikatoren bestimmt werden können, welcher Aufwand hierfür betrieben werden muss und welche Probleme dabei zu berücksichtigen sind.

Sekundärstatistische Daten

Die geringe Größe der beiden ausgewählten Innovationsfelder führt dazu, dass offenbar keine sekundärstatistischen Daten vorhanden sind, die zur Bestimmung der Indikatoren herangezogen werden könnten. Die beispielhaft genannten amtlichen oder anderen Statistiken betrachten keine so tiefen Differenzie rungen, die die explizite Betrachtung der gewählten Innovationsfelder ermöglichten.

4 http://www.nuklearmedizin.de.
Primärstatistische Daten

Für die beiden Innovationsfelder CT bzw. PET/CT wurden, nach jetzigem Stand der Erkenntnis, keine speziellen primärstatistischen Befragungen durchgeführt. Allerdings sind Unternehmen, die Produkte aus dem Bereich der Bildgebenden Verfahren produzieren, im Kontext von Studien zur Medizintechnik befragt worden (Hornschild/Raab/Weiß 2005; AKM/DGBMT 2005). Die Daten wurden aber nicht hinsichtlich dieser Gruppe von Unternehmen ausgewertet, so dass auch keine entsprechenden Aussagen getroffen werden können.

Bibliometrische Daten

Da Publikationen ein wesentlicher Output sind, kann mit Hilfe bibliometrischer Analysen ermittelt werden, seit wann ein Forschungsbereich bearbeitet wurde. Die bibliometrische Analyse wurde für die Innovationsfelder CT bzw. PET/CT durchgeführt. Für die Analyse wurden die beiden Datenbanken „HighWire“ und der „Science Citation Index Expanded“ genutzt. HighWire ist ein Projekt der Stanford University. Die Artikel, die in High-Wire aufgenommen sind, stammen aus den Bereichen Technologie und Medizin. Zu berücksichtigen ist dabei, dass die beiden Datenbanken unterschiedliche Kriterien bei der Berücksichtigung von Publikationen anlegen, so dass zu erwarten ist, dass sich die entsprechenden Publikationszahlen unterscheiden.

Für das Innovationsfeld PET/CT ergibt sich eine ähnliche Entwicklung, die allerdings erst viel später einsetzt (siehe Abbildung 2). In beiden Datenbanken sind Publikationsdaten zu diesem Thema ab 1984 verfügbar. Die Datenbank HighWire ermittelte 3.284 Artikel bei Eingabe des Schlagwortes PET/CT mit einem deutlichen Anstieg während der letzten fünf Jahre. Der Science Citation Index ermittelt für das Schlagwort „PET/CT“ insgesamt 1.804 Publikationen, davon in den letzten fünf Jahren 1.722.

Abbildung 1:
Publikationen im Innovationsfeld CT (SCI und Highwire)

Quelle: SCI, Highwire; Darstellung des FiBS
Bestimmen könnte man nun auch die Anzahl der Zitate in diesen Forschungsbereichen, indem man die Zitate, die für jeden Artikel angegeben sind, addiert. Da dies sehr aufwändig ist, wurde hierauf jedoch verzichtet.

Außerdem wäre interessant, bei den Publikationen nach der Relevanz zu unterscheiden, was allerdings ein grundlegendes Fachwissen und einen erheblichen Rechercheaufwand voraussetzt. Über die Publikations- und Zitationszahlen lässt sich zudem nicht bestimmen, in welche Richtung die Forschungsentwicklungen führen. Dafür wäre eine umfassende Analyse der Artikel bzw. der Abstracts notwendig. Eine rein quantitative bibliometrische Analyse kann dies nicht leisten.

Patentdaten

Für die Patentanalyse stehen zahlreiche Datenbanken zur Verfügung, auf die in vielen Fällen über das Internet ein Zugriff möglich ist. Aus der Vielzahl von möglichen Quellen wurden die Patentdatenbanken des „European Patent Office“ (EPO) und des Deutschen Patent- und Markenamtes (DPMA) herangezogen, um so eine internationale und eine nationale Perspektive einnehmen zu können.

In den Abbildungen 3 und 4 sind die Entwicklungen nach Innovationsfeld dargestellt. Auch wenn sich in der Tendenz ähnliche Entwicklungen ergeben, zeigt sich, dass die Entwicklungen von der Wahl der Datenbasis abhängen.

Abbildung 3:
Patentanmeldungen im Bereich CT (EPO und DPMA)
Quelle: EPO, DPMA; Darstellung des FiBS

Abbildung 4:
Patentanmeldungen im Bereich PET/CT (EPO und DPMA)
Quelle: EPO, DPMA; Darstellung des FiBS
Daten aus Projektdatenbanken

Damit ergeben sich insgesamt sehr kleine Werte für die entsprechenden Indikatoren, die das Projektgeschehen in den beiden Innovationsfeldern skizzieren. Die Stärke von Projektindikatoren zeigt sich deshalb vermutlich besser bei größeren Innovationsfeldern, bei denen eine größere Zahl von Projekten zu erwarten ist.

Daten aus Expert/innengesprächen

Im Rahmen der vorliegenden Studie wurden keine Expert/innengespräche geführt. Die Möglichkeiten, die diese Form der Datengewinnung bietet, werden aber deutlich, wenn man sich die Ergebnisse der Expert/inneninterviews der BMBF-Studie (AKM/DGBMT 2005) anschaut, die zur Bedeutung verschiedener Forschsthemen der Medizintechnik befragt wurden.

Sekundärquellen

Für das Studium von Sekundärquellen bieten sich für die beiden Innovationsfelder zahlreiche Quellen an. Insbesondere Publikationen und Internetseiten der zuvor aufgelisteten Akteur/innen und Organisationen bieten hilfreiche Informationen, um die Indikatoren des elementaren Systems empirisch zu bestimmen. Dies gilt vor allem für die technischen Indikatoren des Bereichs A.

Internetseiten geben aber z.B. auch Aufschluss über die Kooperation von Unternehmen und Forschungseinrichtungen, so z.B. zwischen der Charité Universitätsmedizin Berlin und der Siemens AG, die im Oktober 2004 das „Imaging Science Institute“ (ISI) an der Charité Berlin eröffnet haben. Durch die Zusammenarbeit sollen frühzeitig Erkenntnisse der Anwender/innen in die Produktentwicklung von CTs und MRTs eingehen.5

Auch lassen sich aus der Wirtschafts- und Tagespresse Informationen entnehmen, die zu Veränderungen von Marktstrukturen führen und somit auch Konsequenzen für die Entwicklung von Innovationsfeldern haben. So hat Siemens in den letzten zwei Jahren mehr als 10 Mrd. EUR eingesetzt, um im Bereich der Medizintechnik seine Marktposition auszubauen (vgl. Siemens 2005).

Modellrechnungen

Modellrechnungen, die die gesamtwirtschaftlichen Effekte der Entwicklung der beiden Innovationsfelder ermitteln könnten, existieren nach jetziger Kenntnisstand nicht. Hintergrund hierfür ist sicher auch, dass diese Innovationsfelder vergleichsweise klein sind.

3.4 Bewertung des Ansatzes

Die Beantwortung dieser Fragen ist vor dem Hintergrund von drei Problemen zu sehen. Das Indikatorensystem wurde keinem umfassenden empirischen Test unterzogen, so dass die Wirkungszusammenhänge zwischen den Indikatoren nicht klar sind. Zudem wurden bislang nur die elementaren Indikatoren betrachtet. Schließlich wurden aufgrund der begrenzten Ressourcen nur ausgewählte Indikatoren des elementaren Systems für die beiden Innovationsfelder betrachtet.

Dennoch können mit Hilfe der Publikations- und Patentindikatoren erste Antworten auf die beiden Fragen gegeben werden. Betrachtet man die Publikationsentwicklung in Abbildung 1 und die Patententwicklung in Abbildung 3 für das Innovationsfeld CT, so zeigt sich, dass zu Beginn der 1970er Jahre die Publikationen früher als die Patente eine mögliche Entwicklung des Innovationsfeldes CT andeuten. Würde man Früh- und Spätdatensindikatoren unterscheiden (können), so wäre der Publikationsindikator tendenziell ein Frühindikator, der Patentindikator ein Spätdatensindikator.

Dieses Muster zeigt sich auch beim Innovationsfeld PET/CT (siehe Abbildung 2 zur Publikations- und Abbildung 4 zur Patententwicklung). Auch hier zeigen sich ähnliche Entwicklungen mit deutlichen positiven Veränderungen für die beiden Indikatoren ab etwa der Jahrtausendwende. Damit ist, der Logik des Ansatzes folgend, das Innovationsfeld PET/CT (unter Beachtung der zuvor dargestellten Einschränkungen) als solches identifiziert.

Ähnlich wie bei den Publikationsindikatoren sind die Ergebnisse erst dann aussagekräftig, wenn man sie mit Daten aus anderen Bereichen vergleicht, bspw. mit anderen Bildgebenden Verfahren oder anderen Bereichen der Medizintechnik. Auch der Vergleich mit Durchschnittswerten für den gesamten Bereich der Medizintechnik oder der Vergleich mit anderen Innovationsfeldern wäre hilfreich.

3.5 Zwischenfazit

In diesem Abschnitt wurde das elementare Indikatorensystem für zwei Innovationsfelder aus dem Bereich der Bildgebenden Verfahren in der Medizintechnik angewandt. Hierfür wurden mit den vorgestellten Methoden der Datenanalyse die 33 elementaren Indikatoren betrachtet und zum Teil auch empirisch bestimmt. Dabei zeigt sich, dass der zu betreibende Recherchaufwand vielfach erheblich sein dürfte. Prinzipiell sind aber alle Indikatoren des elementaren Systems auf der Basis vorhandener Datenquellen bestimmbar.

Durch die Wahl von zwei Innovationsfeldern, für die in weiten Teilen dieselben Rahmenbedingungen gelten, sind Vergleiche
zwischen den Entwicklungen möglich. Für das Innovationsfeld CT kann die Genese anhand wesentlicher Indikatoren wie den bibliometrischen und Patentindikatoren nachgezeichnet werden. Die Ergebnisse dieser ex post-Betrachtung können als Ausgangspunkt für die ex ante-Entwicklung des Innovationsfelds PET/CT genommen werden. Hier zeigen sich ähnliche Verläufe bei den Entwicklungen der betrachteten Indikatoren. Deshalb kann vermutet werden, dass sich das Innovationsfeld PET/CT ähnlich wie das Innovationsfeld CT entwickeln wird. Ob sich allerdings die wirtschaftlichen und anderen Potenziale ähnlich gestalten werden, kann nur mit Hilfe der Potenzialindikatoren (Bereiche C, D und E) geklärt werden. Da diese aber dem erweiterten Indikatorensystem zuzuordnen sind, wäre hier die Erschließung neuer Daten (insbesondere Expert/innen Gespräche) notwendig, bevor weitere Aussagen getroffen werden können.

Deutlich wird allerdings auch, dass die Stärke des Indikatorensystems erst sichtbar wird, wenn weitere Innovationsfelder untersucht und weitere Entwicklungen im Längs- und Querschnitt verglichen werden können. Dann wäre eine Einordnung der Innovationsfelder hinsichtlich ihrer Potenziale im Vergleich zu anderen Innovationsfeldern möglich. Dies würde insbesondere der Innovationspolitik beim Einsatz ihrer Mittel zur Förderung von Innovationsfeldern helfen.

4 Zusammenfassung, Handlungsempfehlungen und Zukunftsoptionen

4.1 Zusammenfassung der wesentlichen Ergebnisse

4.2 Möglichkeiten und Grenzen des Ansatzes

aufwändig. Deshalb ist zu überlegen, wie die Datenerhebung vereinfacht und standardisiert werden kann.

Auch zeigt sich, dass die Innovationsforschung, trotz zahlreicher und auch wesentlicher Studien, (noch) nicht in der Lage ist, eine umfassende Innovationstheorie zu liefern, die die Bedingungen und Wirkungen von Innovation erklären kann. Insbesondere durch die empirische Innovationsforschung zeigt sich ein hohes Maß an Heterogenität, das in vielen Fällen durch unterschiedliche technologische oder auch Marktbefindungen begründet ist.

Die aufgezeigten Grenzen können allerdings verschoben werden. Im nachfolgenden Unterabschnitt werden Perspektiven der Weiterentwicklung des Ansatzes aufgezeigt und die notwendigen Forschungsbedarfe benannt.

4.3 Forschungsbedarfe und Perspektiven

Ausgangspunkt der Suche nach neuen Innovationsfeldern

Dementsprechend sind für diese Phase Delphi-Methoden oder auch Data Mining-Verfahren (vgl. z. B. Bröchler 1999) von Interesse, um möglicherweise äußerst früh Indizien für kommende wissenschaftlich-technische Entwicklungen zu finden. Wenn sich mit Hilfe dieser Verfahren relevante Stichwörter für eine sich möglicherweise abzeichnende Entwicklung benennen lassen, so kann die Suche nach entsprechenden Publikationen, Patenten, Projekten etc. zur Bestimmung der Indikatoren beginnen.

Eine regelmäßige Befragung von Expert/innen aus der Wissenschaft, aus Unternehmen, Verbänden und Vereinigungen, Finanzorganisationen und/oder öffentlichen Einrichtungen hinsichtlich relevanter Stichwörter könnte eine Möglichkeit sein, um die Ausgangspunkte für die Anwendung des Indikatoren- systems zu bestimmen.

Darüber hinaus sind die Entwicklungen für die verschiedenen Bildgebenden Verfahren nicht voneinander unabhängig. Interdependenzen zeigen sich aber auch bei ganz konkreten Entwicklungen. So wird aktuell diskutiert, ob MRT-Verfahren zur Früherkennung von Brustkrebs im Gegensatz zu bisherigen Auffassungen besser geeignet sind als die Mammographie, die ein klassisches Röntgenverfahren darstellt (Siegmund-Schulze 2007). Würde sich diese Erkenntnis durchsetzen, so wäre zu erwarten, dass die Bedeutung von MRT deutlich steigen und sich somit auch Forschungsschwerpunkte verlagern werden.

Weitergehende Anwendungen des Indikatorensystems

Daneben bietet es sich an, alle Entwicklungen in einem Innovationsfeld zu betrachten. Von großem Nutzen für das Verständnis des Indikatorensystems dürfte es sein, wenn alle Generationen einer Produktfamilie betrachtet würden, und zwar nicht nur die erfolgreichen Technologien, sondern auch die, die es nicht bis zur Marktreife geschafft haben oder die nach kurzer Zeit wieder aus dem Markt verdrängt worden sind. Hierzu würde sich das Innovationsfeld der Bildgebenden Verfahren hervorragend anbieten. Es existieren verschiedene Generationen von Bildgebenden Verfahren, die nach und nach auf den Markt gekommen sind, die aber unterschiedlich erfolgreich waren bzw. sind.

Eine Betrachtung eines relativ kleinen Innovationsfeldes bzw. aller Innovationen eines relativ kleinen Innovationsfeldes hat den Vorteil, dass einerseits ein Teil der Indikatoren sich in ähnlicher Weise darstellen wird, weil z.B. die gleichen Rahmenbedingungen vorhanden sind. Andererseits können aber auch sehr spezifische Aspekte, die über den Erfolg oder Misserfolg von Innovationen entscheiden, möglicherweise an einzelnen Indikatoren sichtbar gemacht werden.

Theoretische Grundlagen

Die Darstellung der theoretischen Grundlagen in Unterabschnitt 2.2 sowie die Ausführungen in Abschnitt 3 zu den unterschiedlichen Entwicklungen in den Innovationsfeldern CT bzw. PET/CT haben gezeigt, dass Innovationsprozesse bzw. Innovationssysteme durch einen gewissen Grad an Heterogenität gekennzeichnet sind. Aus diesem Grund ist, wie zuvor dargelegt, eine größere Zahl von Anwendungen des Indikatorensystems notwendig, um letztlich verstehen zu können, wann an welchen Indikatoren abgelesen werden kann, dass sich ein neues Innovationsfeld mit einem bestimmten Potenzial entwickelt.

Weitergehende Untersuchungen auf der Basis theoretischer und vor allem empirischer Erkenntnisse könnten dazu beitragen, dass für Gruppen von Innovationsfeldern die Indikatoren in eine zeitliche Abfolge gebracht werden können. Wünschenswert wäre eine abgestufte Unterscheidung von Früh- und Spätindikatoren, wie es auch im Fall der beiden Beispiele aus dem Bereich der Bildgebenden Verfahren der Fall war. Es ist aber deutlich darauf hinzuweisen, dass diese vermeintlich konsistente Reihenfolge in manchen Innovationsfeldern sich anders gestaltet oder nicht ermittelbar ist.

Entwicklung eines Rating-Systems

Durch die größere Anzahl von Indikatoren des Indikatorensystems werden bei einer entsprechenden Anwendung zahlreiche Informationen über das Innovationsfeld zusammengetragen. Aus den beschriebenen Gründen sind diese verschiedenen Informationen von Bedeutung. Sollen aber Innovationsfelder im Längs- oder Querschnitt verglichen werden, so ist eine Reduk-

4.4 Fazit

Die vorliegende Studie zeigt, dass die theoretischen Grundlagen für die Entwicklung eines Indikatorensystems zur Identifikation und Potenzialabschätzung von neuen Innovationsfeldern vorhanden sind. Es hat sich gezeigt, dass zahlreiche Datengruppen und Methoden der Datenanalyse existieren, um die entsprechenden Indikatoren empirisch zu bestimmen. Es ist allerdings deutlich darauf hinzuweisen, dass nur ein Teil der Indikatoren bestimmt werden kann, ohne dass neue Datenquellen erschlossen werden müssen.

Erste empirische Anwendungen aus dem Bereich der Bildgebenden Verfahren haben gezeigt, dass die Anwendung des Indikatorensystems prinziell machbar ist. Es hat sich auch gezeigt, dass hiermit durchaus ex ante wichtige Aussagen für Innovationsfelder getroffen werden können. Allerdings sind weitere empirische Anwendungen nötig, um das Indikatorenystem testen zu können.

Insbesondere hat sich aber gezeigt, dass dieses Indikatorenystem eine sehr gute Basis für die Entwicklung eines Rating-Systems darstellt, welches die Indikatoren des Indikatorensystems in sinnvoller Weise zusammenfüßen und somit in einfacher Weise Längs- und Querschnittsentwicklungen für Innovationsfelder verdeutlichen könnte. Ein derartiges System würde Anwender/innen aus Ministerien, wissenschaftlichen Einrichtungen oder auch der Wirtschaft und nicht zuletzt den (privaten und öffentlichen) Finanziers von Forschung ein Instrument an die Hand geben, um die Entwicklung von Innovationsfeldern besser einschätzen und gegebenenfalls fördernd eingreifen zu können.
5 Referenzen

5.1 Literatur

AKM, DGBMT (2005), Zur Situation der Medizintechnik in Deutschland im internationalen Vergleich. Studie im Auftrag des BMBF, Aachen, Frankfurt/Main.

Bundesministerium für Bildung und Forschung (2007b), Bericht zur Technologischen Leistungsfähigkeit Deutschlands, Bonn, Berlin.

Rescher, Nicholas (1998), Predicting the Future: An introduction to the theory of forecasting, Albany.

Plagens, Manfred (2001), Innovationsprozesse in der Medizintechnik in Deutschland, Würzburg.

Rescher, Nicholas (1998), Predicting the Future: An introduction to the theory of forecasting, Albany.

Trajtenberg, Manuel (1990), Economic Analysis of Product Innovation. The Case of CT Scanners, Cambridge (Mass.).

VDI Technologiezentrum, Eva Cebulla, Norbert Malanowski, Axel Zwick (2006), Hochschulangebote im Bereich Nanotechnologie, in: Innovationsbegleitung Nanotechnologie S.

Welge, Martin K., Andreas Al-Laham (2003), Strategisches Management, Wiesbaden.

Wilkinson, Nick (2005), Managerial Economics, Cambridge.

Witt, Ulrich (1987), Individualistische Grundlagen der evolutio-
nischen Ökonomik, Tübingen.

World Economic Forum (2006), The Global Competitiveness

Zentralverband der Elektro- und Elektronikindustrie e. V. (ZVEI)

Zweck, Axel (2000), Technologiefrüherkennung als Teil inte-
grierten Technologiemanagements, in: Karlheinz Steinmüller,
Rolf Kreibich, Christoph Zöpel (Hrsg.), Zukunftsforschung in Eur-

5.2 Internetressourcen

Acatech – MedTech-Projekte: http://www.medtech-projekte.de

BMBF – Förderkatalog: http://www.foerderkatalog.de

BMIw Förderdatenbank: http://www.foerderdatenbank.de

Crump Institute for Molecular Imaging:
http://www.crump.ucla.edu

Deutsche Gesellschaft für Nuklearmedizin:
http://www.nuklearmedizin.de

Deutsches Patent- und Markenamt:
http://depatisnet.dpma.de/DepatisNet

High Wire Press (Stanford University):
http://highwire.stanford.edu

Imaging Science Institute (ISI) Charité Berlin – Siemens:

Rochester Institutes of Science (Joseph P. Hornak):
http://www.cis.rit.edu/

Siemens: http://www.siemens.de

Stand Dezember 2008
Dr. Sonja R. Kind

Dr. Jan Wessels

