Dr. Robert Rentzsch
"Behind the many buzzwords, a lot of in-depth conceptual work is required to promote digitalisation in education. Together with extensive research, also to avoid 'reinventing the wheel' (or the whitepaper), this is what I do at the iit."
Focus of work
- Digitalisation in education
- Machine Learning, AI
- Digital Credentials, Badges
- Concepts for online information portals
- Open (research) data
- Data analysis and visualisation
Curriculum vitae
At Institute for Innovation and Technology (iit), Robert Rentzsch works on topics surrounding the digitalisation of the educational system. This includes e.g. digital education certificates and the digital recording of learning outcomes. Led by Robert Rentzsch, the iit also worked with the Ministry of Education of the German federal state of Schleswig-Holstein concerning the selection of new AI-professorships. Before joining the iit, he spent several years as a postdoctoral scholar at the Robert Koch Institute in Berlin, where he conducted research on the application of machine learning methods to biological sequence data. Rentzsch earned his PhD in bioinformatics from University College London.
Publications
Bertini, Anastasia ; Pentenrieder, Elisabeth Anna ; Rebentisch, Jan; Schaat, Samer; Rentzsch, Robert (2020): Manipulationssichere und per Knopfdruck verifizierbare Digital Credentials: Die Blockchain als Initiator internationaler Kooperationsprojekte. In: Hochschulforum Digitalisierung (Hrsg.). Digitalisierung in Studium und Lehre gemeinsam gestalten. Innovative Formate, Strategien und Netzwerke. HFD-Sammelband.
Rentzsch, Robert; Shajek, Alexandra; Vogel-Adham, Elke; Hartmann, Andreas Ernst (2020): Standardisierung in der wissenschaftlichen Weiterbildung als ein Kernprozess der Professionalisierung. In: Zeitschrift Hochschule und Weiterbildung (2). S. 19-26.
Rentzsch, Robert; Renard, Bernhard Y.; Nitsche, Andreas; Deneke, Carlus (2019): Predicting Bacterial Virulence Factors: evaluation of machine learning and negative data strategies. In: Briefings in Bioinformatics. Vol. 21, No. 5. S. 1596–1608.
Bartoszewicz, Jakub M. ; Seidel, Anja; Rentzsch, Robert; Renard, Bernhard Y. (2019): DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks. In: Bioinformatics, Vol. 36, No. 1. S. 81–89.